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A. Methods: 

A.1 Samples:  
 
 Twenty-six healthy practitioners of various RR-eliciting techniques 

(including several types of meditation, Yoga, and repetitive prayer) participated in 

the time series study. Twenty-seven individuals without any prior RR-eliciting 

experience served as controls (N group; N1 =27). Novice subjects had 8-weeks 

of RR training, listened to a 20-minute RR-eliciting CD daily and are classified as 

N2 after 8 week of training (N2 =26). Whole blood (5 ml) was collected at 0, 20 

and 35 minutes each of the study participants (Fig. 1). Total RNA extraction and 

purification was performed using previously described protocols (1).  

	
  

A.2 Transcriptional profiling: 
 
 For transcriptional profiling, the Affymetrix human genome high throughput 

arrays plates with 96 arrays (HT U133A), containing more than 22,000 

transcripts, was used. Microarray analysis was conducted by the BIDMC 

Genomics and Proteomics Center at the Beth Israel Deaconess Medical Center 

according to previously described protocols for total RNA extraction and 

purification, complementary DNA (cDNA) synthesis, in vitro transcription for 

production of biotin-labeled cRNA, hybridization of cRNA with human genome HT 

U133A Affymetrix plates, and scanning of image output file. The quality of 

scanned arrays images were determined on the basis of background values, 

percent present calls, scaling factors, and 3’-5’ ratio of actin and GAPDH using 

the SimpleAffy package for R (2). 



Scanned array images were analyzed by dChip (3). The raw probe level 

data was normalized using smoothing-spline invariant set method, and the signal 

value for each transcript was summarized using the PM-only based signal 

modeling algorithm in which the signal value corresponds to the absolute level of 

expression of a transcript (3). To calculate model based expression signal 

values, array and probe outliers were interrogated and image spikes were treated 

as signal outliers. The outlier detection was carried out using the dChip outlier 

detection algorithm. A chip was considered to be an outlier if the probe, signal or 

array outlier percentage exceeded a threshold of 10%. No chips were found to be 

outliers.  

A.3 Gene Set Enrichment Analysis:  

 Gene Set Enrichment Analysis (GSEA) was used to determine whether an 

a priori defined sets of genes showed statistically significant, concordant 

differences between 2 groups (N2 vs. N1, and M vs. N1) or two time points (15 

minutes vs. 35 minutes, 15 minutes vs. 50 minutes) in the context of known 

biological sets. GSEA is more powerful than conventional single-gene methods 

for studying the effects of interventions such as RR in which many genes each 

make subtle contributions. 

GSEA calculates an enrichment score using the Kolmogorov-Smirnov test (KS-

test) for determining whether a rank-ordered list of genes for a particular 

comparison of interest is enriched in a biologically related geneset. We have 

performed the enrichment analysis using the 880 canonical pathways derived 

from MSigDB2.0 (4, 5). The enriched gene sets have nominal p-value (NPV) less 



than 5% and a False Discovery Rate (FDR) less than 25% after 500 random 

permutations. These criteria ensure that there is minimal chance of identifying 

false positives.  

The genes from enriched pathways were merged into functional modules 

on the basis of overlap of significantly enriched genes using enrichment map 

plugin (6) in cytoscape: An Open Source Platform for Complex Network Analysis 

and Visualization (7). Genes with significant overlap (70% common genes) were 

considered neighbor and substitutable with each other. The patterns in 

significantly enrichment genesets from different comparisons (e.g. N vs. M, N1 

vs. N2, 15 min vs. 35 min, 15 min vs. 50 min) were identified by developing a 

dotplots in lattice package. The interesting selected patterns were divided into 

the following major groups: i) long-term effects (M vs. N1 or M vs. N2), ii) 

progressive effects (changes which occur in both M and N2 compared to N1, and 

are of greater significance in M). Furthermore, by virtue of having three time 

points, we are able to describe constitutive changes (present at all three time 

points), acute changes (only present immediately after RR-elicitation) and 

delayed changes (only present 15 minutes after RR completion). Please see 

details for pattern classification in supplementary document. 

A.4 Classification of GSEA enrichment patterns: 

The patterns are explained in detail below: 

i) Progressive I patterns: The Progressive-I Upregulated pattern 

consisted of gene sets that were significantly enriched in both N2 and 

M as compared to N1 and with greater enrichments in M (i.e., more 



time points with significant enrichments in M compared to N1 and N2) 

(Fig. 2A, solid dots indicating significant group differences). In addition 

to these across group differences at each time point, most gene sets 

also showed significant changes across time points within each group 

(Fig. 2A, asterisks indicating significant time difference). Similarly, 

GSEA analysis identified Progressive-I Downregulated gene sets 

based on both across and within group comparisons. 

ii)  Progressive II patterns: GSEA identified pathways that depicted 

similar enrichments for M and N2 as compared to N1 at T1 and T2 in 

across group comparison. In addition to these across group differences 

at each time point, most gene sets also showed significant changes 

across time points within M group only. We classified these pathways 

as ‘Progressive II’ gene sets since the rapid enrichment within one 

session of RR practice can be evoked by short-term as well as long-

term practitioners. In addition to across group changes, the M group is 

also able to depict the temporal changes in gene expression. 

 

iii) Long-term patterns: GSEA identified pathways that were significantly 

upregulated in M at 2 or 3 time points compared to both N1 and N2, of 

which there were no significant group differences. In addition to these 

across group differences at each time point, most gene sets also 

showed significant changes across time points within M group only. 

	
    



A.5 Self Organizing Map analysis: 

 To identify time and group dependent patterns from differentially 

expressed genes, we have adopted the Self Organizing Map (SOM) clustering 

technique(8). SOM allow the grouping of gene expression patterns into an 

imposed structure in which adjacent clusters are related, thereby identifying sets 

of genes that follow certain expression patterns across different conditions(8). 

We performed SOM clustering on transcript expression values using Pearson 

correlation coefficient based distance metrics and a target of 18 groups.  

 

A.6 Gene Ontology (GO) enrichment analysis:  

To identify the over-represented GO categories in the different gene 

expression patterns obtained from SOM clustering, we used the Biological 

Processes and Molecular Functions Enrichment Analysis available from the 

Database for Annotation, Visualization and Integrated Discovery (DAVID) (9). 

DAVID is an online implementation of EASE software that produces a list of over-

represented categories using jackknife iterative resampling of the Fisher exact 

probabilities. A p-value gets assigned to each category on the basis of 

enrichments. Smaller p-value reflects increasing confidence in over-

representation. The GO categories with p-value <0.05 were considered 

significant.	
  

A.7 Pathways and Interactive network analysis: 	
  

We analyzed interactive networks and pathways for different patterns 

identified using SOM analysis of differentially expressed genes using the 



commercial system biology oriented package Ingenuity Pathways Analysis (IPA 

4.0) (http://www.ingenuity.com/). The knowledge base of this software consists of 

ontology and network models derived by systematically exploring the peer 

reviewed scientific literature. It calculates the P value using Fisher Exact test for 

each network and pathway according to the fit of user’s data to the IPA database 

(10).(10). It displays the results as a score (-log P value) indicating the likelihood 

of a gene to be found in a network or pathways by random chance. For example, 

a network achieving a score of 2 has at least 99% confidence of not being 

generated by chance alone. 
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C. Supporting Information Legends:  

Figure S1: Schematic view of temporal relaxation response study design 

and analysis plans. The transcriptome profiling was performed on peripheral 

blood mononuclear cells (PBMCs) collected immediately prior to (T0), 

immediately after (T1) and 15 minutes after (T2) listening to a 20-minute 

Education CD by the Novices (N1) or a 20-minute RR CD by the Short term 

practitioners (N2) and the Long term practitioners (M). The global transcriptome 

of PBMCs was profiled using HT_U133A arrays containing >22,000 transcripts.  

The transcriptome data were analyzed using high-level bioinformatics algorithms 

to identify differentially expressed transcripts, significantly affected pathways and 

systems biology networks that are related to RR elicitation. The expression 

patterns were generated from differentially expressed genes using Self-

Organizing Maps (SOM) analysis. The results of the GSEA from all comparisons 

were classified to temporal patterns (e.g. Progressive, Long) by developing a R-

language script.  

 

Figure S2:  Temporal genomic expression patterns during one session of 

RR elicitation.  Genes that were differentially expressed either across or within 

groups comparisons at different time point were used as seed sets of genes for 

Self-Organizing Map (SOM) analysis. These differentially expressed genes were 

partitioned to 18 separate maps according to Pearson correlation coefficient 

based distance metrics. Each pattern represents a set of genes that depict a 

similar expression pattern suggesting that they are biologically linked to a specific 



function. The figure displays the box plot of the gene expression with X-axis 

representing time points and groups, and Y-axis representing scaled gene 

expression data from -1 to +1. The patterns are merged into 10 expression 

categories on the basis of similarities in expression patterns.   

 
Figure S3: Interactive Network of progressively  (Progressive II) 

upregulated genes. The network was generated from genes of 27 progressively 

upregulated pathways  (Progressive I) related to energy production, metabolism, 

growth factors and glucose regulation. The interaction information about the 

genes was obtained from public interaction databases or the commercial 

Ingenuity package. In a network each node represents a gene and an edge 

represents an interaction (e.g. protein-protein, protein-DNA or protein-RNA). The 

nodes with high degree of connectivity (Top 20) are highlighted in yellow color.   

 

Figure S4: Interactive network and focus hubs of genes depicting Long-

term Upregulation patterns. A) Interactive network, B) Top 20 focus genes. The 

interactive network and focus hub identification analysis was performed on genes 

from 14 Long-term Upregulated pathways linked to DNA stability, recombination 

and repair. In the network each node represents a gene and an edge represents 

an interaction. The focus gene hubs were identified using the bottleneck 

algorithm for identification of the most interactive molecules with a tree like 

topological structure. The bottleneck algorithm ranks genes on the basis of 

significance level with smaller rank indicating increasing confidence. The 



pseudocolor scale from red to green represents the bottleneck ranks from 1 to 20 

(Fig S4B).  

 

Figure S5: Interactive network and focus hubs of genes depicting acute 

Progressive (Progressive II) Downregulation patterns. The interactive 

network and focus hub identification analysis was performed on genes from 15 

Progressively Downregulated (Progressive I) pathways linked to mRNA 

processing and immune response. The focus gene hubs were identified using the 

bottleneck algorithm for identification of the most interactive molecules with a tree 

like topological structure. The bottleneck algorithm ranks genes on the basis of 

significance level with smaller rank indicating increasing confidence. The 

pseudocolor scale from red to green represent bottleneck ranks from 1 to 20. 

 

Figure S6: Top focus gene hubs identified from Interactive networks of 

significantly affected Long-term Downregulated pathways. The figure 

represents the top 20 focus genes identified from complex interactive networks 

generated from pathways with Long-term Downregulated patterns. The focus 

gene hubs were identified and ranked using the bottleneck algorithm for 

identification of the most interactive molecules with a tree like topological 

structure. The pseudocolor scale from red to green represent bottleneck ranks 

from 1 to 20 (smaller rank indicating increasing confidence).  

 

 


