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The basic model 

Here, we give a more formal description of the hierarchical RL model used in this paper. 

We first focus on a “core” Markov decision process that governs the lowest level within the 

representation hierarchy. Suppose this “core” Markov decision process (MDP) is defined by the 

4-tuple S1,A1, pT
1 , pR

1 , where S1  is a set of states, A1  is a set of actions, pT
1 (s1

a1

→x1)  is the 

transition function, determining the probability of transiting from state s1  to state x1  after taking 

action a1 , and pR
1 (r1 s1,a1)  is the reward function, which determines the probability of receiving 

reward r1  from the environment after taking action a1  in state s1 . The upper indices are not 

exponents, but refer to the level of abstraction of the corresponding MDP (See Figure S1).    
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Figure S1: A sample decision hierarchy with five levels of abstraction.  

 
Since we are at the lowest level of the decision hierarchy, each action in this core MDP is called 

a “primitive action”. π 1 = S1 × A1→ [0,1]  is a stationary and stochastic policy, specifying that at 

time t , the agent performs action at
1  with probability π 1(st

1,at
1) , whenever it observes state st

1 . 

The objective of the agent is to find a policy that will maximize the sum of discounted future 

rewards from each state. To achieve this objective, the Q-learning algorithm (1) assumes that the 

agent selects actions based on the subjective values it has assigned to available choices through 

its past experiences in the environment. These values, denoted by Q1(st
1,at

1)  for the state-action 

pair (st
1,at

1) , are aimed to be proportional to the sum of discounted rewards that are expected to 

be received after taking action at
1  onward: 

Q1(st
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Note that for simplicity, we have assumed through this whole manuscript that the discount factor 

is equal to one. However, the essence of the simulation results does not change for other values 

of the discount factor. Drug-induced modulation of this variable, supposedly encoded by 



serotonin (2),  and its contribution to addiction-like behavior is not studied in this work, and is 

left for future research. 

To update the Q-values based on new experiences, the agent computes the discrepancy between 

the predicted value and the realized reward, each time it receives a reward rt
1  after taking action 

at
1  in state st

1 : 

δt
1 = rt

1 +V 1(st+1
1 )−Q1(st

1,at
1)  (S2 

V 1(st+1
1 )  is the value of the best possible action in the next state: V 1(st+1

1 )=max
!a ∈A1

Q1(st+1
1 , !a )  . 

The prediction error signal is then used to update the previous estimation: 

Q1(st
1,at

1)←Q1(st
1,at

1)+α.δt
1  (S3 

where α  is the learning rate.  

We now define a relatively “abstract” MDP (3) above the core MDP, by the 4-tuple 

S2,A2, pT
2, pR

2 , where S2 ⊆ S1  (See Figure S1). Each abstract action (option), a2 ∈ A2 , in this 

abstract MDP is a sequence of primitive actions from the core MDP. For example, in Figure S1, 

the option at
2  is a sequence of some actions from the first level of abstraction, including the 

primitive action at
1 . 

Formally, an option a2  can be defined by a triplet I a
2

,π a2 ,β a2 , where I a
2

 is the input set, 

determining the states in which option a2  can be adopted ( I a
2

⊆ S2 ⊆ S1 ).β a2 : S1→ [0,1]  is the 

termination condition, determining the probability that an option will terminate in each state. If 

the option a2  is selected to be performed, then primitive actions are selected according to the 

core level’s policy, π 1 , until the option terminates stochastically according to β a2 . The policy 



π a2  actually follows the same strategy as the policy π 1 , meaning that when the abstract system 

chooses an option, the detailed (core) level implements that option based on its own policy.  

Selection among different available options at the abstract level is based on π 2 , which is the 

policy of the abstract system. In order for this system to choose options such that the sum of 

discounted rewards is maximized, the reward and transition functions of the abstract MDP 

should be defined as follows. The reward function pR
2 (r2 s2,a2 )  should come from the below 

definition: 

r2 (s2,a2 ) = E rt
1 + rt+1

1 + rt+2
1 ..+ rt+τ

1 ε(s2,a2,τ )!
"

#
$  (S4 

Where ε(s2,a2,τ )  is the event of a2  being initiated at time t  from state s2 . Furthermore,  τ  is 

the random number of time-steps that option a2  takes to terminate. In Figure S1, for example, 

rt
2 , which is the reward of action at

2 , is equal to the sum of rewards acquired during performing 

the sequence of primitive actions in the core level that constitute the abstract action at
2 . 

Furthermore, the transition function of the abstract MDP should be defined as:  

pT
2 (s2

a2

→x2 ) = p(x2,τ )
τ=1

∞

∑  (S5 

Where p(x2,τ )  is the is the probability that a2  terminates in x2  after τ  steps when initiated in 

s2 . Having defined the reward and transition functions for the abstract MDP, this MDP can be 

seen as an independent decision problem on which, the Q-learning algorithm can be used to 

estimate the value of state-option pairs, denoted by Q2 (st
2,at

2 ) :  

δt
2 = rt

2 +V 2 (st+1
2 )−Q2 (st

2,at
2 )  

Q2 (st
2,at

2 )←Q2 (st
2,at

2 )+α.δt
2  

(S6 

(S7 



This scheme can be generalized to any arbitrary number of levels of abstraction. The general 

equations in this case will be: 

δt
n = rt

n +V n (st+1
n )−Qn (st

n,at
n )  

Qn (st
n,at

n )←Qn (st
n,at

n )+α.δt
n  

(S8 

(S9 

Figure S2A shows schematically the neural circuit required for performing such computations 

for five levels of abstraction.  
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Figure S2: The corresponding neural circuit for the three discussed value learning algorithms is 

a hierarchical decision structure. A, Using a simple TD-learning algorithm (equation S7), the 



prediction error signal in each level of abstraction is computed independently from other levels. 

B, In the model proposed by Haruno and Kawato (4) (equation S8), the value of the temporally-

advanced state comes from one higher level of abstraction. C, in our model (equation S9) the 

value of the temporally-advanced state is substituted with a combination of the reward and Q-

value of the performed action at a higher level of abstraction.  

 
Since lower levels of the hierarchy are relatively more high-dimensional than the abstract levels, 

learning the optimal reward-maximizing policy becomes an increasingly hard problem as the 

level of abstraction decreases. However, the comparative advantage of abstract levels in rapid 

value-learning can be exploited by more detailed levels, through a certain way of communication 

between the levels. 

As in Figure S1, suppose that at time t, the agent is performing the very abstraction action at
5 , 

initiated from the state st
5 . Assume that at this point, for the performance of this action to be 

finished, only at
4 , which is the last piece of its corresponding sequence of actions in one lower 

level of abstraction, should be performed. Also, for the performance of the action at
4  to be 

finished, only at
3 , which is the last piece of its corresponding sequence of actions in one lower 

level of abstraction, should be performed, and so on. Thus, after performing the primitive action 

at
1  at the lowest level, the agent enters the state st+1  at all the levels. At this point, for computing 

the prediction error signal δt
1 , rather than using V 1(st+1

1 )   as in equation S2, the agent can use 

V 2 (st+1
2 ) , since the two values converge to the same steady level. Similarly, for computing δt

2 , 

V 3(st+1
3 )  can be replaced with V 2 (st+1

2 ) , and so on. Thus, in general we will have: 

δt
n = rt

n +V n+1(st+1
n+1)−Qn (st

n,at
n )  (S10 



Qn (st
n,at

n )←Qn (st
n,at

n )+α.δt
n  (S11 

This idea first proposed by Haruno and Kawato (4) accelerates convergence at lower levels, 

since the value of V n+1(st+1
n+1)  converges faster than V n (st+1

n ) . A schematic neural circuit required 

for performing such computations is depicted in Figure S2B. 

Note that these equations can be used only for updating the value of actions that finish 

performance of an abstract option. For other conditions, the prediction error signal will be 

computed as in a flat Q-learning algorithm, without being dependent on the abstract levels (as in 

equation S8).  

It is clear from equation S10 that when the agent arrives into the state st+1
n , for computing the 

prediction error signal δt
n , the agent needs to have all the variables st

n , at
n , rt

n , Qn (st
n,at

n ) , and 

V n+1(st+1
n+1)  in the working memory. However,  Qn+1(st

n+1,at
n+1)− rt

n+1  can be used as an estimate of 

V n+1(st+1
n+1) , since they converge to the same steady level. As all the values of this estimate of 

V n+1(st+1
n+1)  are already available in the working memory (for computing δt

n+1 ), such substitution 

makes the algorithm more efficient in terms of working memory. With this substitution we will 

have: 

δt
n = rt

n +Qn+1(st
n+1,at

n+1)− rt
n+1 −Qn (st

n,at
n )  

Qn (st
n,at

n )←Qn (st
n,at

n )+α.δt
n  

(S12 

(S13 

In fact, in order for information to be a “trace” that can be used in active computations and 

control of behavior it needs to be loaded from long-term to the working memory. The working 

memory store is severely limited in its capacity for storage (5, 6) and forms a critical bottleneck 

for decision making. Therefore, for the above model to be compatible with efficient working 

memory storage, it is critical to decrease the number of variable required to do the valuation at 



each particular step within the hierarchy. The neural circuit required for performing such 

computations is schematically shown in Figure S2C, which demonstrates the less dependency of 

this algorithm on working memory. 

Note that in simulating the blocking phenomenon, we use the model described above, but in a 

Pavlovian experimental design, where the policy component is removed from the equations and 

the agent is just a passive predictor of stimulus value: 

δt
n = rt

n +V n+1(st
n+1)− rt

n+1 −V n (st
n )  

V n (st
n )←V n (st

n )+α.δt
n  

(S14 

(S15 

Modeling drug’s effect on DA circuit 

In order to model the pharmacological effect of drug on value-learning at the abstract level, a 

constant positive bias is added to the prediction error of the drug-seeking and –taking actions. 

This pharmacological effect of drug appears only in the very last primitive action of the “drug-

seeking and -taking” option, when the drug is just consumed. Thus, whereas for other primitive 

actions the prediction error signal is computed by equation S8, only for the last primitive action 

of the drug-related option, the prediction error can be achieved by adding the bias D  to equation 

S12: 

δt
n = rt

n +Qn+1(st
n+1,at

n+1)− rt
n+1 −Qn (st

n,at
n )+D  (S16 

To see intuitively how the model behaves in the case of drugs, we can assume that rt
n = rt

n+1  . 

This happens when the rewarding outcome of an option is received only in the last primitive 

action of that option, as it is the case in our simulated environment (Figure 1A). Under such 

assumption, equation S16 will be reduced to: 

δt
n =Qn+1(st

n+1,at
n+1)−Qn (st

n,at
n )+D  (S17 



It is clear from the above equation that Qn (st
n,at

n )  will converge to Qn+1(st
n+1,at

n+1)+D  .  

δt
n = 0 ⇒ Qn (st

n,at
n ) =Qn+1(st

n+1,at
n+1)+D  (S18 

Thus, the pharmacological effect of drug on the prediction error signal results in the asymptotic 

value of drug-seeking behavior at a level to be D  units higher than that of one higher level of 

abstraction. Accumulation of this bias over N  levels of abstraction results in the discrepancy in 

the asymptotic value of drug-seeking between the two extremes of the hierarchy to become 

N *D .  

Figure S3 illustrates the potential sites of action of drugs that our model predicts. Note that in 

this figure, compared to Figure S2, the descending excitatory projection from the striatum to the 

more dorsal area of the midbrain is replaced with two consecutive inhibitory projections. This 

captures the recently demonstrated role of GABAergic interneurons of the VTA in carrying the 

expected reward and inhibiting the DA neurons (7).  
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Figure S3: Our model predicts different sites of action of drugs on the reward-learning circuit: 

sites 1 to 3. Drugs affecting sites 4 to 6, in contrast, will not result in the behavioral and 

neurobiological patterns produced by simulation of the model for drugs, but will produce results 

similar to the case of natural rewards. 

 



In Figure S3, an excitatory effect on site 1 results in a direct increase of the prediction error 

signal, δt
n , and thus, will produce the bias-effect that accumulates over the DA spirals and results 

in high values of drug-seeking response at motor levels. An excitatory effect on site 1 is 

equivalent to adding a positive term D  to equation S12, which leads to equation S16. This is a 

likely mechanism of action for several drugs of abuse: Cocaine, amphetamine and ecstasy block 

DA reuptake and therefore, result in an increase in extracellular DA concentration (8).  

Furthermore, an inhibitory effect on sites 2 and 3 will result in disinhibition of dopamine neurons 

and thus, will again result in cognitive/behavioral conflict. An inhibitory effect on site 2 is 

equivalent to subtracting a positive term  from the term Qn (st
n,at

n )  in equation S12. This will 

result in equation S16. Similarly, an inhibitory effect on site 3 is equivalent to adding a positive 

term D  to the term Qn+1(st
n+1,at

n+1)  in equation S12, which will again result in equation S16. This 

disinhibitory effect on DA neurons through GABAergic neurons appears to be the mechanism of 

action of several drugs (8): morphine, nicotine, alcohol, etc. 

Note that an inhibitory effect on site 4 is equivalent to subtracting a positive term D  from the 

term Qn+1(st
n+1,at

n+1)  in equation S12, which will result in the following equation: 

δt
n = rt

n +Qn+1(st
n+1,at

n+1)− rt
n+1 −Qn (st

n,at
n )−D  (S19 

Clearly, this equation will not produce the simulation results showed in the paper. Furthermore, 

and inhibitory effect on site 5 (concurrent inhibition of sites 2 and 4) is equivalent to subtracting 

a positive term D  from both Qn (st
n,at

n )  and Qn+1(st
n+1,at

n+1) , which result in the following 

equation: 

δt
n = rt

n +Qn+1(st
n+1,at

n+1)−D− rt
n+1 − Qn (st

n,at
n )−D"# $%  (S20 



= rt
n +Qn+1(st

n+1,at
n+1)− rt

n+1 −Qn (st
n,at

n )  

Since the two D  terms cancel out one another, such effect predicts the same results as for natural 

rewards. This predicts that inhibiting striatal GABA neurons that project to the VTA will not 

produce addiction-like behavior. 

Finally, an excitatory (inhibitory) effect on site 6 is equivalent to adding (subtracting) a positive 

term D  to (from) both rt
n  and rt

n+1 . Thus, the two D  terms will cancel out one another again and 

therefore, no bias will be produced in information transmission from one level of abstraction to 

the next. 

On the relationship to the previously proposed drug-effect RL models 

In the seminal paper of modeling addiction in the reinforcement learning framework (9), it was 

explicitly presumed that addictive drugs have a “non-compensable” pharmacological effect on 

the dopaminergic circuit; i.e., they never let the prediction error signal converge to zero. To 

capture this effect, the following functional form was suggested for modeling the effect of drug 

on the prediction error signal: 

δt =max rt +V (st+1)−Q(st,at )+D, D[ ]  (S21 

Note that since that model is based on a flat (single-layer) reinforcement learning,  (st,at )  in the 

above equation is the state-action pair that results in reward, and st+1  is the temporally-advanced 

state. Three major criticisms that have been leveled at this assumption are that: (1:) Since the 

teaching signal, δt , never becomes zero, the value of drug-seeking choices will grow 

unboundedly, which is not biologically plausible. (2:) It predicts that the blocking effect should 

not be observed in the case of drug rewards; a prediction that has been proven untrue at least for 

cocaine (10). Blocking is a conditioning phenomenon where the animal is blocked from learning 



an association between a stimulus and its upcoming outcome, if the outcome can be already 

predicted by another stimulus. In terms of reinforcement learning theory, if a stimulus can fully 

predict the value of its associated outcome, the prediction error signal will become zero and thus, 

no new learning can occur. However, according to equation S21, the prediction error signal 

never goes to zero for drug outcomes and thus, the animal should always be able to associate 

new stimuli with drug outcomes. (3:) Because of the max  operator in equation S21, even if  has 

a large negative value, the prediction error signal will be still positive (equal to D ). In fact, even 

if drug is paired with catastrophic consequences, the animal will still reinforce drug-seeking 

behavior. In other words, equation S21 predicts that animals are totally insensitive to drug-

related punishments, however strong the punishments are, even at the very first time they 

experience drug. This prediction has been shown to be incorrect in experiments showing 

insensitivity of drug self-administration response to drug-associated punishments, after 

prolonged but not limited drug use (11). 

Recently, Dezfouli et al (12) showed that the first two shortcomings mentioned above are 

resolved by simply assuming that the effective influence of drugs on the dopamine circuit decays 

after prolonged drug consumption. This assumption is based on the neurobiological data showing 

long-lasting reduction of dopamine D2 receptor availability in the striatum of addicts (13, 14), 

which results in decreased output by dopamine neurons to the downstream circuits. This 

assumption preserves the essential features of the original model (9) like compulsive behavior, 

and low elasticity of drug-seeking behavior to adverse consequences or costs.  

The model we considered in this work also resolves the first two criticisms. The functional form 

we have adopted in this paper for modeling the effect of drug (equation S16) naturally results in 

the effective pharmacological influence of drugs on DA circuit to gradually converge to zero. 



However, to keep the model simple, we have forgone all the mathematical complications of the 

model considered in (12) and instead, here the pharmacologically-induced reinforcing power of 

drugs simply decreases to zero within the same time-scale that the normal prediction error signal 

converges to zero. However, assuming a longer timescale for this process does not affect the 

essence of what our model predicts. We also see in the main text that the model handles correctly 

blocking with extensive pre-training for both drug and natural rewards. 

Moreover, as we do not use a max  operator, the prediction error signal does not ignore negative 

rewards (resolving the third shortcoming mentioned above) for the drug case. Hence, initially 

(early in training or drug self-administration) the model is indeed elastic to a strong punishment. 

However, it becomes inelastic to punishments after prolonged drug use; the reason behind that is 

that accumulation of drug’s effect over dopamine spirals increases the drug-seeking value at 

motor-levels to such a high level that even a strong natural punishment will not be able to 

decrease it sufficiently (see main text for the central result on the valuation discordance between 

the abstract and detailed levels). 

Uncertainty-based competition between the levels of the hierarchy: from 

valuation to action-policy selection 

We assume that while dealing with a task with a presumably given decision hierarchy, the 

abstract levels control behavior during the early stages of learning the values. This is because the 

representation of state space is much coarser in abstract levels than in detailed levels, and 

learning the values becomes much faster and more flexible when the dimensionality of the space 

and the number of basis functions decrease (4). However, the coarse representation of actions at 

abstract levels makes the ultimate approximation capability inferior in those levels and thus, with 

more training, the control over behavior gradually shifts to more detailed levels of the hierarchy. 



To model this competition mechanism among the levels of the hierarchy over controlling 

behavior, we can assume that at each point of time, the level that has the least uncertainty in 

estimating the value of available choices controls behavior. A similar mechanism was previously 

proposed for arbitration between the habitual and the goal-directed systems (15). In order to keep 

track of uncertainties, one can use Kalman Temporal Difference (KTD) (16), which in addition 

to learning state-action values, provides a measure of accuracy of learned values that corresponds 

to the certainty of estimations. In order to capture the inferior value-approximation capability of 

coarse representations, we introduce noise into higher levels of abstraction (known as process 

noise, in the KTD framework). In fact, the magnitude of the noise introduced to different levels 

is proportional to the abstractness of the action representation at that level. 

As proof of concept, we simulated this arbitration mechanism in a simple, single-choice task, 

with only three levels of abstraction (Figure S4). Simulation results (Figure S5) show that during 

the early trials, the most abstract level has the minimum uncertainty among the levels. However, 

the second and then the third levels gradually achieve the minimum uncertainty-level. 
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Figure S4: The task used for simulating the uncertainty-based competition mechanism among 

the levels of the hierarchy for taking control over behavior. 
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Figure S5: Simulation result, showing gradual shift of control over behavior from higher to 

lower levels of the hierarchy.  Q(s,a)  and U(s,a)  show the estimated value and uncertainty of 

the state-action pairs, respectively. 
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