Supporting Information

Characterization of FUS mutations in amyotrophic lateral sclerosis using RNA-Seq

Marka van Blitterswijk, Eric T. Wang, Brad A. Friedman, Pamela J. Keagle, Patrick Lowe, Ashley Lyn
Leclerc, Leonard H. van den Berg, David E. Housman, Jan H. Veldink, John E. Landers

Materials and Methods S1. Formulas used for RNA-Seq analysis.

Table S1. Summary of RNA-Seq analysis.

Table S2. Functional annotation KEGG pathways.

Table S3. Differentially expressed genes present within identified KEGG pathways.

Table S4. Significant protein domains present in differentially expressed genes.

Table S5. Shared genes with retained introns as identified by Venn diagrams and KEGG pathways.

Figure S1. MA plots per condition comparison.

Figure S2. FUS gene expression levels measured by RNA-Seq.

Figure S3. FUS protein levels measured by western blot.

Figure S4. Correlation of RNA-Seq and RT-PCR for RBM25, TAF15, TARS, TPR, APP and HN1.

Figure S5. Correlation of RNA-Seq and Semi-quantitative PCR for PRPF8 and RPS24.

Materials and Methods S1. Formulas used for RNA-Seq analysis.

Exon Skipping: $\log _{2}$ (Inclusion: Skip + General Ratio) in the two groups, respectively. In formula LISGR1 $=\log _{2}((j u p 1+e a l 1+j d n 1) /(e u p 1+j s k 1+e d n 1))$ and analogously for LISGR2.

Intron Retention: $\log _{2}$ (Intron: Flank Ratio). Log-Odds-Ratio (Flanking). In formula LORF = LIFR2 LIFR1. The sign convention means that higher value indicates more intron retention (unspliced isoform) in the second group. This indicates the level of the intron relative to the flanking exons.

More detailed information regarding terms and definitions can be found on the ExpressionPlot website (http://www.expressionplot.com/wiki/index.php?title=Project_directory_structure) and corresponding manuscript [17].

Table S1. Summary of RNA-Seq analysis.

Sample	No. Reads	No. Reads Passing QC	\% Passing QC	Uniquely Mapping	\% Uniquely mapping	No. Ribosomal	\% Ribosomal	Splice Junctions	\% Splice Junctions
Wild-type	$31,051,162$	$31,022,757$	99.91	$21,865,318$	70.48	446,094	2.04	$2,222,084$	10.16
R521G	$31,077,360$	$31,057,750$	99.94	$21,710,924$	69.91	488,727	2.25	$2,292,605$	10.56
R522G	$24,491,122$	$24,476,034$	99.94	$17,427,598$	71.20	474,659	2.72	$1,754,345$	10.07
siRNA	$28,196,024$	$28,179,703$	99.94	$20,640,291$	73.25	291,210	1.41	$2,242,343$	10.86
Vector	$27,295,832$	$27,273,639$	99.92	$19,416,054$	71.19	421,688	2.17	$1,983,350$	10.22
Average	$28,422,300$	$28,401,977$	99.93	$20,212,037$	71.20	424,476	2.12	$2,098,945$	10.37

Table S2. Functional annotation KEGG pathways.

Analysis	Group	KEGG pathway	Count	P-value	Benjamini
Differential expression	FUS-WT vs. vector	Ribosome	14	5.6E-6	
					7.2E-4
	siRNA vs. vector	Spliceosome	34	7.1E-11	1.2E-8
		Ribosome	26	1.9E-9	1.6E-7
	R521G vs. vector	Spliceosome	18	4.4E-10	4.1E-8
	R522G vs. vector	Ribosome	15	3.1E-8	3.1E-6
		Spliceosome	15	3.3E-6	1.7E-4
		Mismatch repair	6	2.4E-4	8.2E-3
		DNA replication	7	2.7E-4	6.8E-3
		Cell cycle	11	1.3E-3	2.6E-2
Skipped exons	FUS-WT vs. vector	N/A	N/A	N/A	N/A
	siRNA vs. vector	Ribosome	18	8.6E-11	8.9E-9
		Spliceosome	17	2.0E-7	1.1E-5
	R521G vs. vector	Ribosome	6	1.6E-4	6.7E-3
	R522G vs. vector	Spliceosome	6	3.7E-4	1.4E-2
		Ribosome	5	9.0E-4	1.6E-2
Retained introns	FUS-WT vs. vector	Spliceosome	50	1.0E-16	1.9E-14
		Huntington's disease	54	3.9E-12	3.3E-10
		Proteasome	21	2.7E-8	1.5E-6
		Parkinson's disease	37	4.9E-8	2.1E-6
		Oxidative phosphorylation	37	7.6E-8	2.6E-6
		Cell cycle	36	8.6E-8	2.4E-6
		DNA replication	17	3.3E-7	7.9E-6
		Pyrimidine metabolism	29	5.5E-7	1.2E-5
		RNA polymerase	14	2.3E-6	4.4E-5
		Aminoacyl-tRNA biosynthesis	17	2.7E-6	4.6E-5
		Alzheimer's disease	38	9.9E-6	1.5E-4
		Nucleotide excision repair	16	3.8E-5	5.3E-4
		Citrate cycle (TCA cycle)	13	5.4E-5	7.0E-4
		Purine metabolism	33	2.1E-4	2.5E-3
		Mismatch repair	10	4.3E-4	4.9E-3
		RNA degradation	15	2.8E-3	2.9E-2
	siRNA vs. vector	Spliceosome	57	1.4E-22	2.4E-20
		Huntington's disease	54	$2.4 \mathrm{E}-12$	2.0E-10

| | Aminoacyl-tRNA biosynthesis | 15 | $1.3 \mathrm{E}-5$ | $2.4 \mathrm{E}-4$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Parkinson's disease | 29 | $1.8 \mathrm{E}-5$ | $2.9 \mathrm{E}-4$ |
| | Oxidative phosphorylation | 27 | $1.7 \mathrm{E}-4$ | $2.6 \mathrm{E}-3$ |
| | Alzheimer's disease | 30 | $6.1 \mathrm{E}-4$ | $8.3 \mathrm{E}-3$ |
| | Citrate cycle (TCA cycle) | 10 | $1.8 \mathrm{E}-3$ | $2.2 \mathrm{E}-2$ |
| | Nucleotide excision repair | 12 | $2.2 \mathrm{E}-3$ | $2.5 \mathrm{E}-2$ |
| | RNA degradation | 14 | $2.2 \mathrm{E}-3$ | $2.4 \mathrm{E}-2$ |

Abbreviations: FUS-WT = cell lines transfected with human FUS wild-type, used as a model for overexpression, siRNA = cell lines transfected with FUS small interfering RNA (siRNA), used as a model for underexpression, R521G = p.Arg521Gly, R522G $=$ p.Arg522Gly, and N/A $=$ not applicable. Significant KEGG pathways are shown for each condition. Homo sapiens is used as background, in Table 1 the Vector alone is used as background. Genes are specified in Table S3.

Table S3. Differentially expressed genes present within identified KEGG pathways.

Group	$\begin{aligned} & \hline \text { KEGG } \\ & \text { pathway } \\ & \hline \end{aligned}$	Name	Description
FUS-WT vs. vector	Ribosome	RPL13	ribosomal protein L13
		RPL18	ribosomal protein L18
		RPL26	ribosomal protein L26
		RPL29	ribosomal protein L29
		RPL37A	ribosomal protein L37a
		RPL8	ribosomal protein L8
		RPS11	ribosomal protein S11
		RPS16	ribosomal protein S16
		RPS19	ribosomal protein S19
		RPS3	ribosomal protein S3
		RPS4X	ribosomal protein S4X
		RPS6	ribosomal protein S6
		RPLP0	ribosomal protein, large, P0
		RPLP2	ribosomal protein, large, P2
siRNA vs. vector	Spliceosome	DDX23	DEAD (Asp-Glu-Ala-Asp) box polypeptide 23
		DDX46	DEAD (Asp-Glu-Ala-Asp) box polypeptide 46
		BAT1	HLA-B associated transcript 1
		LSM2	LSM2 homolog, U6 small nuclear RNA associated
		PRP19	PRP19/PSO4 pre-mRNA processing factor 19 homolog
		PRPF40A	PRP40 pre-mRNA processing factor 40 homolog A
		PRPF8	PRP8 pre-mRNA processing factor 8 homolog
		RBM17	RNA-binding motif protein 17
		RBM25	RNA-binding motif protein 25
		THOC2	THO complex 2
		THOC4	THO complex 4
		U2AFBP	U2 small nuclear RNA auxiliary factor 1
		SR140	U2-associated SR140 protein
		ACIN1	apoptotic chromatin condensation inducer 1
		EFTUD2	elongation factor Tu GTP binding domain containing 2
		HSPA1A	heat shock 70kDa protein 1B
		HSPA8	heat shock 70kDa protein 8

	MCM7	minichromosome maintenance complex component 7
	PLK1	polo-like kinase 1 (Drosophila)
PCNA	proliferating cell nuclear antigen	
YWHAE	similar to 14-3-3 protein epsilon (14-3-3E)	
PRKDC	similar to protein kinase, DNA-activated, catalytic polypeptide	
STAG2	stromal antigen 2	
YWHAQ	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, theta polypeptide	

Table S4. Significant protein domains present in differentially expressed genes.

Group	INTERPRO	Count	P-value	Benjamini
FUS-WT vs. vector	RNA recognition motif, RNP-1	20	7.2E-7	6.0E-4
	Endoplasmic reticulum, targeting sequence	10	9.2E-7	3.8E-4
	Nucleotide-binding, alpha-beta plait	17	5.2E-5	1.4E-2
siRNA vs. vector	Nucleotide-binding, alpha-beta plait	48	3.2E-14	5.4E-11
	RNA recognition motif, RNP-1	46	4.1E-13	3.5E-10
	Zinc finger, PHD-type	19	1.2E-5	6.6E-3
	Zinc finger, PHD-finger	18	2.1E-5	8.6E-3
	Helicase, superfamily 1 and 2, ATP-binding	20	4.0E-5	1.3E-2
	DEAD-like helicase, N -terminal	20	5.2E-5	1.5E-2
	Actinin-type, actin-binding, conserved site	9	5.4E-5	1.3E-2
	Zinc finger, PHD-type, conserved site	18	6.9E-5	1.4E-2
	K Homology	11	7.4E-5	1.4E-2
	DNA/RNA helicase, C-terminal	19	1.3E-4	2.2E-2
R521G vs. vector	RNA recognition motif, RNP-1	28	1.9E-15	1.2E-12
	Nucleotide-binding, alpha-beta plait	27	2.0E-14	6.3E-12
	DNA/RNA helicase, C-terminal	12	$4.3 \mathrm{E}-6$	8.9E-4
	Helicase, superfamily 1 and 2, ATP-binding	12	4.3E-6	8.9E-4
	DEAD-like helicase, N -terminal	12	5.2E-6	8.0E-4
	Zinc finger, PHD-finger	10	2.6E-5	3.2E-3
	Zinc finger, PHD-type	10	4.1E-5	4.2E-3
	DNA-binding SAP	6	5.2E-5	4.6E-3
	SNF2-related	6	$2.7 \mathrm{E}-4$	2.1E-2
	K Homology, type 1	6	$3.1 \mathrm{E}-4$	2.1E-2
	K Homology, type 1, subgroup	6	4.2E-4	2.5E-2
	K Homology	6	$5.4 \mathrm{E}-4$	$3.0 \mathrm{E}-2$
R522G vs. vector	Nucleotide-binding, alpha-beta plait	20	9.2E-9	6.3E-6
	RNA recognition motif, RNP-1	19	4.6E-8	1.6E-5
	HEAT	10	5.0E-7	1.1E-4
	Armadillo-like helical	13	$3.1 \mathrm{E}-6$	5.3E-4
	RNA helicase, ATP-dependent, DEAD-box, conserved site	7	1.9E-5	2.6E-3
	Chaperonin TCP-1, conserved site	5	1.9E-5	2.2E-3

Helicase, superfamily 1 and 2, ATP-binding	11	2.1E-5	2.1E-3
DNA/RNA helicase, C-terminal	11	$2.1 \mathrm{E}-5$	2.1E-3
DEAD-like helicase, N -terminal	11	$2.5 \mathrm{E}-5$	$2.1 \mathrm{E}-3$
Chaperone, tailless complex polypeptide 1	5	$3.0 \mathrm{E}-5$	$2.2 \mathrm{E}-3$
Nucleic acid-binding, OB-fold	8	4.1E-5	$2.8 \mathrm{E}-3$
RNA helicase, DEAD-box type, Q motif	7	$4.5 \mathrm{E}-5$	$2.8 \mathrm{E}-3$
DNA/RNA helicase, DEAD/DEAH box type, N-terminal	8	$1.0 \mathrm{E}-4$	$5.8 \mathrm{E}-3$
Importin-beta, N-terminal	5	1.2E-4	6.1E-3
Chaperonin Cpn60/TCP-1	5	1.2E-4	$6.1 \mathrm{E}-3$
DNA-dependent ATPase MCM, conserved site	4	$2.9 \mathrm{E}-4$	$1.4 \mathrm{E}-2$
DNA-dependent ATPase MCM	4	4.4E-4	$2.0 \mathrm{E}-2$
ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding domain, active site	4	$1.1 \mathrm{E}-3$	$4.6 \mathrm{E}-2$
Heat shock protein Hsp90	4	$1.1 \mathrm{E}-3$	$4.6 \mathrm{E}-2$

Table S5. Shared genes with retained introns as identified by Venn diagrams and KEGG pathways.

KEGG pathway	Name	Description
Spliceosome	BUD31	BUD31 homolog (S. cerevisiae)
	DDX23	DEAD (Asp-Glu-Ala-Asp) box polypeptide 23
	DDX5	DEAD (Asp-Glu-Ala-Asp) box polypeptide 5
	DHX38	DEAH (Asp-Glu-Ala-His) box polypeptide 38
	LSM4	LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae)
	LSM7	LSM7 homolog, U6 small nuclear RNA associated (S. cerevisiae)
	PRPF3	PRP3 pre-mRNA processing factor 3 homolog (S. cerevisiae)
	PRPF31	PRP31 pre-mRNA processing factor 31 homolog (S. cerevisiae)
	PRPF38B	PRP38 pre-mRNA processing factor 38 (yeast) domain containing B
	PRPF8	PRP8 pre-mRNA processing factor 8 homolog (S. cerevisiae)
	RBM17	RNA binding motif protein 17
	RBM25	RNA binding motif protein 25
	THOC4	THO complex 4
	U2AF1	U2 small nuclear RNA auxiliary factor 1
	U2AF2	U2 small nuclear RNA auxiliary factor 2
	ACIN1	apoptotic chromatin condensation inducer 1
	CTNNBL1	catenin, beta like 1
	EFTUD2	elongation factor Tu GTP binding domain containing 2
	EIF4A3	eukaryotic translation initiation factor 4A, isoform 3
	HSPA8	heat shock 70kDa protein 8
	HNRPM	heterogeneous nuclear ribonucleoprotein M
	SNRPG	hypothetical protein LOC100132425; similar to small nuclear ribonucleoprotein polypeptide G ; small nuclear ribonucleoprotein polypeptide G; small nuclear ribonucleoprotein G-like protein
	PQBP1	polyglutamine binding protein 1
	PRPF6	similar to U5 snRNP-associated 102 kDa protein (U5-102 kDa protein); PRP6 pre-mRNA processing factor 6 homolog (S. cerevisiae)
	ASCC3L1	similar to U5 snRNP-specific protein, 200 kDa ; small nuclear ribonucleoprotein 200 kDa (U5)

	WDR57	small nuclear ribonucleoprotein 40 kDa (U5)
	SNRPA	small nuclear ribonucleoprotein polypeptide A
	SF3B14	splicing factor 3B, 14 kDa subunit
	SF3B1	splicing factor 3 b , subunit $1,155 \mathrm{kDa}$
	SF3B2	splicing factor 3b, subunit 2, 145kDa
	SF3B3	splicing factor 3 b , subunit $3,130 \mathrm{kDa}$
	SFRS1	splicing factor, arginine/serine-rich 1
	SFRS2	splicing factor, arginine/serine-rich 2
	SFRS4	splicing factor, arginine/serine-rich 4
	SFRS5	splicing factor, arginine/serine-rich 5
	SFRS7	splicing factor, arginine/serine-rich 7, 35kDa
	SFRS9	splicing factor, arginine/serine-rich 9
	SART1	squamous cell carcinoma antigen recognized by T cells
	SMNDC1	survival motor neuron domain containing 1
	TCERG1	transcription elongation regulator 1
	TRA2A	transformer 2 alpha homolog (Drosophila)
	SFRS10	$\underline{\text { transformer } 2 \text { beta homolog (Drosophila) }}$
	USP39	ubiquitin specific peptidase 39
Huntington's disease	ATP5G3	ATP synthase, $\mathrm{H}+$ transporting, mitochondrial F0 complex, subunit C3 (subunit
		9)
	BAX	BCL2-associated X protein
	CREBBP	CREB binding protein
	NDUFA1	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5kDa
	NDUFA10	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, $10,42 \mathrm{kDa}$
	NDUFA2	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2, 8kDa
	NDUFA8	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, $8,19 \mathrm{kDa}$
	NDUFB10	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, $10,22 \mathrm{kDa}$
	NDUFS1	NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-coenzyme
		Q reductase)
	NDUFS3	NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH-coenzyme
		Q reductase)
	NDUFS6	NADH dehydrogenase (ubiquinone) Fe-S protein 6, 13kDa (NADH-coenzyme
		Q reductase)
	NDUFS7	NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-coenzyme
		Q reductase)

	NDUFV1	NADH dehydrogenase (ubiquinone) flavoprotein 1, 51kDa
	AP2A1	adaptor-related protein complex 2, alpha 1 subunit
	AP2A2	adaptor-related protein complex 2, alpha 2 subunit
	AP2M1	adaptor-related protein complex 2, mu 1 subunit
	CLTC	clathrin, heavy chain (Hc)
	CLTA	clathrin, light chain (Lca)
	CLTB	clathrin, light chain (Lcb)
	COX411	cytochrome c oxidase subunit IV isoform 1
	COX7B	cytochrome c oxidase subunit Vllb
	COX6B1	cytochrome c oxidase subunit Vib polypeptide 1 (ubiquitous)
	CYC1	cytochrome c-1
	HDAC1	histone deacetylase 1
	HDAC2	histone deacetylase 2
	IFT57	intraflagellar transport 57 homolog (Chlamydomonas)
	POLR2A	polymerase (RNA) II (DNA directed) polypeptide A, 220kDa
	POLR2B	polymerase (RNA) II (DNA directed) polypeptide B, 140kDa
	POLR2E	polymerase (RNA) II (DNA directed) polypeptide E, 25kDa
	POLR2F	polymerase (RNA) II (DNA directed) polypeptide F
	POLR2G	polymerase (RNA) II (DNA directed) polypeptide G
	POLR2H	polymerase (RNA) II (DNA directed) polypeptide H
	POLR2J	polymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa
	NDUFS5	similar to NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa (NADH-
		coenzyme Q reductase): NADH dehydrogenase (ubiquinone) Fe -S protein 5 ,
		15kDa (NADH-coenzyme Q reductase)
	SLC25A5	solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator).
		member 5; solute carrier family 25 (mitochondrial carrier; adenine nucleotide
		translocator), member 5 pseudogene 8
	SDHA	succinate dehydrogenase complex, subunit A, flavoprotein (Fp)
	SDHB	succinate dehydrogenase complex, subunit B, iron sulfur (Ip)
	SOD1	superoxide dismutase 1, soluble
	UCRC	ubiquinol-cytochrome c reductase complex (7.2 kD)
	UQCRC1	ubiquinol-cytochrome c reductase core protein I
	UQCRC2	ubiquinol-cytochrome c reductase core protein II
	VDAC3	voltage-dependent anion channel 3
DNA replication	MCM2	minichromosome maintenance complex component 2
	MCM3	minichromosome maintenance complex component 3
	MCM4	minichromosome maintenance complex component 4

	MCM5	minichromosome maintenance complex component 5
	MCM6	minichromosome maintenance complex component 6
	MCM7	minichromosome maintenance complex component 7
	POLD1	polymerase (DNA directed), delta 1, catalytic subunit 125kDa
	POLD2	polymerase (DNA directed), delta 2, regulatory subunit 50kDa
	POLE	polymerase (DNA directed), epsilon
	POLE3	polymerase (DNA directed), epsilon 3 (p17 subunit)
	PCNA	proliferating cell nuclear antigen
	RFC2	replication factor C (activator 1) 2, 40kDa
	RFC5	replication factor C (activator 1) 5, 36.5kDa
	RPA1	replication protein $\mathrm{A1}, 70 \mathrm{kDa}$
	RPA2	replication protein $\mathrm{A} 2,32 \mathrm{kDa}$
	RNASEH2A	ribonuclease H 2 , subunit A
Proteasome	PSMC3	proteasome (prosome, macropain) 26 S subunit, ATPase, 3
	PSMD1	proteasome (prosome, macropain) 26S subunit, non-ATPase, 1
	PSMD11	proteasome (prosome, macropain) 26S subunit, non-ATPase, 11
	PSMD13	proteasome (prosome, macropain) 26S subunit, non-ATPase, 13
	PSMD14	proteasome (prosome, macropain) 26S subunit, non-ATPase, 14
	PSMD3	proteasome (prosome, macropain) 26S subunit, non-ATPase, 3
	PSMD7	proteasome (prosome, macropain) 26S subunit, non-ATPase, 7
	PSMD8	proteasome (prosome, macropain) 26S subunit, non-ATPase, 8
	PSME3	proteasome (prosome, macropain) activator subunit 3 (PA28 gamma; Ki)
	PSMA1	proteasome (prosome, macropain) subunit, alpha type, 1
	PSMA5	proteasome (prosome, macropain) subunit, alpha type, 5
	PSMA7	proteasome (prosome, macropain) subunit, alpha type, 7
	PSMB1	proteasome (prosome, macropain) subunit, beta type, 1
	PSMB2	proteasome (prosome, macropain) subunit, beta type, 2
	PSMB4	proteasome (prosome, macropain) subunit, beta type, 4
	PSMB6	proteasome (prosome, macropain) subunit, beta type, 6
	PSMB7	proteasome (prosome, macropain) subunit, beta type, 7
	PSMC4	similar to 26S protease regulatory subunit 6B (MIP224) (MB67-interacting protein) (TAT-binding protein 7) (TBP-7); proteasome (prosome, macropain) $\underline{26 S \text { subunit, ATPase, } 4}$
Pyrimidine metabolism	ITPA	inosine triphosphatase (nucleoside triphosphate pyrophosphatase)

	NME1-NME2	non-metastatic cells 1, protein (NM23A) expressed in; NME1-NME2 readthrough transcript; non-metastatic cells 2, protein (NM23B) expressed in
	NME3	non-metastatic cells 3, protein expressed in
	NP	nucleoside phosphorylase
	POLD1	polymerase (DNA directed), delta 1, catalytic subunit 125kDa
	POLD2	polymerase (DNA directed), delta 2, regulatory subunit 50kDa
	POLE	polymerase (DNA directed), epsilon
	POLE3	polymerase (DNA directed), epsilon 3 (p17 subunit)
	POLR1A	polymerase (RNA) I polypeptide A, 194kDa
	POLR1C	polymerase (RNA) I polypeptide C, 30kDa
	POLR2A	polymerase (RNA) II (DNA directed) polypeptide A, 220kDa
	POLR2B	polymerase (RNA) II (DNA directed) polypeptide B, 140kDa
	POLR2E	polymerase (RNA) II (DNA directed) polypeptide E, 25kDa
	POLR2F	polymerase (RNA) II (DNA directed) polypeptide F
	POLR2G	polymerase (RNA) II (DNA directed) polypeptide G
	POLR2H	polymerase (RNA) II (DNA directed) polypeptide H
	POLR2J	polymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa
	POLR3A	polymerase (RNA) III (DNA directed) polypeptide A, 155kDa
	POLR3H	polymerase (RNA) III (DNA directed) polypeptide H (22.9kD)
	POLR3K	polymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa
	TXNRD2	thioredoxin reductase 2
	TK1	thymidine kinase 1, soluble
	TYMS	thymidylate synthetase
	UMPS	uridine monophosphate synthetase
	UCK2	uridine-cytidine kinase 2
RNA polymerase	POLR1A	polymerase (RNA) I polypeptide A, 194kDa
	POLR1C	polymerase (RNA) I polypeptide C, 30kDa
	POLR2A	polymerase (RNA) II (DNA directed) polypeptide A, 220kDa
	POLR2B	polymerase (RNA) II (DNA directed) polypeptide B, 140kDa
	POLR2E	polymerase (RNA) II (DNA directed) polypeptide E, 25kDa
	POLR2F	polymerase (RNA) II (DNA directed) polypeptide F
	POLR2G	polymerase (RNA) II (DNA directed) polypeptide G
	POLR2H	polymerase (RNA) II (DNA directed) polypeptide H
	POLR2J	polymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa

	POLR3A	polymerase (RNA) III (DNA directed) polypeptide A, 155kDa
	POLR3H	polymerase (RNA) III (DNA directed) polypeptide H (22.9kD)
	POLR3K	polymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa
Cell cycle	CDC45L	CDC45 cell division cycle 45-like (S. cerevisiae)
	CREBBP	CREB binding protein
	E2F1	E2F transcription factor 1
	RAD21	RAD21 homolog (S. pombe)
	ANAPC5	anaphase promoting complex subunit 5
	BUB3	budding uninhibited by benzimidazoles 3 homolog (yeast)
	CDC25A	cell division cycle 25 homolog A (S. pombe)
	CCNA2	cyclin A2
	CCNB1	cyclin B1
	CCNB2	cyclin B2
	CDK4	cyclin-dependent kinase 4
	CDKN2A	cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)
	HDAC1	histone deacetylase 1
	HDAC2	histone deacetylase 2
	MCM2	minichromosome maintenance complex component 2
	MCM3	minichromosome maintenance complex component 3
	MCM4	minichromosome maintenance complex component 4
	MCM5	minichromosome maintenance complex component 5
	MCM6	minichromosome maintenance complex component 6
	MCM7	minichromosome maintenance complex component 7
	PLK1	polo-like kinase 1 (Drosophila)
	PCNA	proliferating cell nuclear antigen
	RBX1	ring-box 1
	SMC1A	structural maintenance of chromosomes 1A
		transforming
	TGFB1	growth factor, beta 1
Parkinson's disease	ATP5G3	ATP synthase, H_{+}transporting, mitochondrial F0 complex, subunit C3 (subunit 9)
	NDUFA1	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5kDa
	NDUFA10	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, $10,42 \mathrm{kDa}$
	NDUFA2	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2, 8kDa

	NDUFA8	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8, 19kDa
	NDUFB10	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, $10,22 \mathrm{kDa}$
	NDUFS1	NADH dehydrogenase (ubiquinone) Fe-S protein $1,75 \mathrm{kDa}$ (NADH-coenzyme Q reductase)
	NDUFS3	NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH-coenzyme Q reductase)
	NDUFS6	NADH dehydrogenase (ubiquinone) Fe-S protein 6, 13kDa (NADH-coenzyme Q reductase)
	NDUFS7	NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-coenzyme Q reductase)
	NDUFV1	NADH dehydrogenase (ubiquinone) flavoprotein 1, 51kDa
	PARK7	Parkinson disease (autosomal recessive, early onset) 7
	COX411	cytochrome c oxidase subunit IV isoform 1
	COX7B	cytochrome c oxidase subunit Vllb
	COX6B1	cytochrome c oxidase subunit Vib polypeptide 1 (ubiquitous)
	CYC1	cytochrome c-1
	NDUFS5	similar to NADH dehydrogenase (ubiquinone) Fe -S protein $5,15 \mathrm{kDa}$ (NADHcoenzyme Q reductase); NADH dehydrogenase (ubiquinone) Fe-S protein 5 , 15 kDa (NADH-coenzyme Q reductase)
	SLC25A5	solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5; solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 pseudogene 8
	SDHA	succinate dehydrogenase complex, subunit A, flavoprotein (Fp)
	SDHB	succinate dehydrogenase complex, subunit B, iron sulfur (lp)
	UCRC	ubiquinol-cytochrome c reductase complex (7.2 kD)
	UQCRC1	ubiquinol-cytochrome c reductase core protein I
	UQCRC2	ubiquinol-cytochrome c reductase core protein II
	$\underline{\text { UCHL1 }}$	ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase)
	UBE2G1	ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, yeast)
	UBE2G2	ubiquitin-conjugating enzyme E2G 2 (UBC7 homolog, yeast)
	VDAC3	voltage-dependent anion channel 3
Purine metabolism	ATIC	5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase
	IMPDH2	IMP (inosine monophosphate) dehydrogenase 2
	APRT	adenine phosphoribosyltransferase
	AK2	adenylate kinase 2
	HPRT1	hypoxanthine phosphoribosyltransferase 1
	ITPA	inosine triphosphatase (nucleoside triphosphate pyrophosphatase)

	NME1-NME2	non-metastatic cells 1, protein (NM23A) expressed in; NME1-NME2 readthrough transcript; non-metastatic cells 2, protein (NM23B) expressed in
	NME3	non-metastatic cells 3, protein expressed in
	NP	nucleoside phosphorylase
	NUDT5	nudix (nucleoside diphosphate linked moiety X)-type motif 5
	PRPS1	phosphoribosyl pyrophosphate synthetase 1; phosphoribosyl pyrophosphate synthetase 1 -like 1
	PAICS	phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase
	PFAS	phosphoribosylformylglycinamidine synthase
	POLD1	polymerase (DNA directed), delta 1, catalytic subunit 125kDa
	POLD2	polymerase (DNA directed), delta 2, regulatory subunit 50kDa
	POLE	polymerase (DNA directed), epsilon
	POLE3	polymerase (DNA directed), epsilon 3 (p17 subunit)
	POLR1A	polymerase (RNA) I polypeptide A, 194kDa
	POLR1C	polymerase (RNA) I polypeptide C, 30kDa
	POLR2A	polymerase (RNA) II (DNA directed) polypeptide A, 220kDa
	POLR2B	polymerase (RNA) II (DNA directed) polypeptide B, 140kDa
	POLR2E	polymerase (RNA) II (DNA directed) polypeptide E, 25kDa
	POLR2F	polymerase (RNA) II (DNA directed) polypeptide F
	POLR2G	polymerase (RNA) II (DNA directed) polypeptide G
	POLR2H	polymerase (RNA) II (DNA directed) polypeptide H
	POLR2J	polymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa
	POLR3A	polymerase (RNA) III (DNA directed) polypeptide A, 155kDa
	POLR3H	polymerase (RNA) III (DNA directed) polypeptide H (22.9kD)
	POLR3K	polymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa
	PKM2	similar to Pyruvate kinase, isozymes M1/M2 (Pyruvate kinase muscle isozyme) (Cytosolic thyroid hormone-binding protein) (CTHBP) (THBP1); pyruvate kinase, muscle
Aminoacyl-tRNA biosynthesis	AARS	alanyl-tRNA synthetase
	NARS	asparaginyl-tRNA synthetase
	DARS	aspartyl-tRNA synthetase
	CARS	cysteinyl-tRNA synthetase
	QARS	glutaminyl-tRNA synthetase
	GARS	glycyl-tRNA synthetase
	LARS	leucyl-tRNA synthetase

	LARS2	leucyl-tRNA synthetase 2, mitochondrial
	MARS	methionyl-tRNA synthetase
	FARSA	phenylalanyl-tRNA synthetase, alpha subunit
	FARSB	phenylalanyl-tRNA synthetase, beta subunit
	SARS	seryl-tRNA synthetase
	TARS	$\underline{\text { threonyl-tRNA synthetase }}$
	YARS	tyrosyl-tRNA synthetase
Oxidative phosphorylation	ATP5G3	ATP synthase, $\mathrm{H}+$ transporting, mitochondrial FO complex, subunit C3 (subunit 9)
	ATP51	ATP synthase, H_{+}transporting, mitochondrial F0 complex, subunit E
	ATP6V1G1	ATPase, $\mathrm{H}+$ transporting, lysosomal $13 \mathrm{kDa}, \mathrm{V} 1$ subunit G1
	ATP6V1F	ATPase, $\mathrm{H}+$ transporting, Iysosomal $14 \mathrm{kDa}, \mathrm{V} 1$ subunit F
	ATP6V1E1	ATPase, $\mathrm{H}+$ transporting, lysosomal $31 \mathrm{kDa}, \mathrm{V1} \mathrm{subunit} \mathrm{E1}$
	NDUFA1	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5kDa
	NDUFA10	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 10, 42 kDa
	NDUFA2	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2, 8kDa
	NDUFA8	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, $8,19 \mathrm{kDa}$
	NDUFB10	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, $10,22 \mathrm{kDa}$
	NDUFS1	NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-coenzyme Q reductase)
	NDUFS3	NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH-coenzyme Q reductase)
	NDUFS6	NADH dehydrogenase (ubiquinone) Fe-S protein 6, 13kDa (NADH-coenzyme Q reductase)
	NDUFS7	NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-coenzyme Q reductase)
	NDUFV1	NADH dehydrogenase (ubiquinone) flavoprotein $1,51 \mathrm{kDa}$
	COX411	cytochrome c oxidase subunit IV isoform 1
	COX7B	cytochrome c oxidase subunit VIll
	COX6B1	cytochrome c oxidase subunit Vib polypeptide 1 (ubiquitous)
	$\underline{\mathrm{CYC} 1}$	cytochrome c-1
	NDUFS5	similar to NADH dehydrogenase (ubiquinone) Fe -S protein $5,15 \mathrm{kDa}$ (NADHcoenzyme Q reductase); NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15 kDa (NADH-coenzyme Q reductase)
	SDHA	succinate dehydrogenase complex, subunit A, flavoprotein (Fp)
	SDHB	succinate dehydrogenase complex, subunit B, iron sulfur (lp)
	UCRC	ubiquinol-cytochrome c reductase complex (7.2 kD)

	UQCRC1	ubiquinol-cytochrome c reductase core protein I
	UQCRC2	ubiquinol-cytochrome c reductase core protein II
Alzheimer's disease	ATP5G3	ATP synthase, $H+$ transporting, mitochondrial F0 complex, subunit C3 (subunit 9)
	NDUFA1	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5 kDa
	NDUFA10	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 10, 42 kDa
	NDUFA2	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2, 8 kDa
	NDUFA8	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, $8,19 \mathrm{kDa}$
	NDUFB10	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, $10,22 \mathrm{kDa}$
	NDUFS1	NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-coenzyme Q reductase)
	NDUFS3	NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH-coenzyme Q reductase)
	NDUFS6	NADH dehydrogenase (ubiquinone) Fe-S protein 6, 13kDa (NADH-coenzyme Q reductase)
	NDUFS7	NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-coenzyme \underline{Q} reductase)
	NDUFV1	NADH dehydrogenase (ubiquinone) flavoprotein 1, 51kDa
	APPBP1	NEDD8 activating enzyme E1 subunit 1
	APP	amyloid beta (A4) precursor protein
	APH1A	anterior pharynx defective 1 homolog A (C. elegans)
	CALM3	calmodulin 3 (phosphorylase kinase, delta); calmodulin 2 (phosphorylase kinase, delta); calmodulin 1 (phosphorylase kinase, delta)
	CAPN2	calpain 2, (m / ll) large subunit
	COX411	cytochrome c oxidase subunit IV isoform 1
	COX7B	cytochrome c oxidase subunit VIll
	COX6B1	cytochrome c oxidase subunit Vib polypeptide 1 (ubiquitous)
	CYC1	cytochrome c-1
	HSD17B10	hydroxysteroid (17-beta) dehydrogenase 10
	MAPK1	mitogen-activated protein kinase 1
	NDUFS5	similar to NADH dehydrogenase (ubiquinone) Fe -S protein 5 , 15 kDa (NADHcoenzyme Q reductase); NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15 kDa (NADH-coenzyme Q reductase)
	SDHA	succinate dehydrogenase complex, subunit A, flavoprotein (Fp)
	SDHB	succinate dehydrogenase complex, subunit B, iron sulfur (lp)
	UCRC	ubiquinol-cytochrome c reductase complex (7.2 kD)
	UQCRC1	ubiquinol-cytochrome c reductase core protein I

	UQCRC2	ubiquinol-cytochrome c reductase core protein II
Nucleotide excision repair	DDB1	damage-specific DNA binding protein 1, 127kDa
	POLD1	polymerase (DNA directed), delta 1, catalytic subunit 125kDa
	POLD2	polymerase (DNA directed), delta 2, regulatory subunit 50kDa
	POLE	polymerase (DNA directed), epsilon
	POLE3	polymerase (DNA directed), epsilon 3 (p17 subunit)
	PCNA	proliferating cell nuclear antigen
	RFC2	replication factor C (activator 1) 2, 40kDa
	RFC5	replication factor C (activator 1) 5, 36.5kDa
	RPA1	replication protein $\mathrm{A1}, 70 \mathrm{kDa}$
	RPA2	replication protein $\mathrm{A} 2,32 \mathrm{kDa}$
	RBX1	ring-box 1
	XPC	xeroderma pigmentosum, complementation group C
Mismatch repair	MSH6	mutS homolog 6 (E. coli)
	POLD1	polymerase (DNA directed), delta 1, catalytic subunit 125kDa
	POLD2	polymerase (DNA directed), delta 2, regulatory subunit 50kDa
	PCNA	proliferating cell nuclear antigen
	RFC2	replication factor C (activator 1) 2, 40kDa
	RFC5	replication factor C (activator 1) 5, 36.5kDa
	RPA1	replication protein $\mathrm{A} 1,70 \mathrm{kDa}$
	RPA2	replication protein $\mathrm{A} 2,32 \mathrm{kDa}$
Citrate cycle (TCA cycle)	ACLY	ATP citrate lyase
	IDH3A	isocitrate dehydrogenase 3 (NAD+) alpha
	IDH3B	isocitrate dehydrogenase 3 (NAD+) beta
	IDH3G	isocitrate dehydrogenase 3 (NAD+) gamma
	MDH2	malate dehydrogenase 2, NAD (mitochondrial)
	PDHA1	pyruvate dehydrogenase (lipoamide) alpha 1
	SDHA	succinate dehydrogenase complex, subunit A, flavoprotein (Fp)
	SDHB	succinate dehydrogenase complex, subunit B, iron sulfur (Ip)
	SUCLG1	succinate-CoA ligase, alpha subunit

Figure S1. MA plots per condition comparison.

Figure S2. FUS gene expression levels measured by RNA-Seq.

FUS
 RNA-Seq

Figure S3. FUS protein levels measured by western blot.

Figure S4. Correlation of RNA-Seq and RT-PCR for RBM25, TAF15, TARS, TPR, APP and HN1. Shown are the p-values for RNA-Seq and RT-PCR.

Differential Expression
RNA-Seq vs. RT-PCR

Figure S5. Correlation RNA-Seq and Semi-quantitative PCR for PRPF8 and RPS24. Shown are the p-values for RNA-Seq and RT-PCR.

Exon Skipping

 RNA-Seq vs. RT-PCR

