
SequenceSqueeze – Compression of FASTQ Format Sequencing Data

Supplementary material

Authors: James K. Bonfield and Matthew V. Mahoney

Data sets: stats

Name Platform Species No. Seqs Seq. Length File size Genome depth

SRR003177 454 GS FLX
Titanium

Human 1,504,571 (Average)
564

1,754,042,560 0.28x

SRR007215_1 ABI SOLiD
System 2.0

Human 4,711,141 25 689,319,444 0.04x

SRR027520_1 Illumina GA II Human 24,246,685 76 5,055,253,238 0.61x

SRR065390_1 Illumina GA II C.Elegans 33,808,546 100 8,819,496,191 33.8x

SRR013951_2 Illumina GA II Human 18,212,437 76 3,663,611,628 0.46x

SRR062634_1 Illumina GA II Human 24,148,993 100 6,345,444,769 0.80x

Table S1: data sets used for program comparison

SequenceSqueeze results

The evaluation machine used by the competition was an Amazon m2.xlarge instance with a separate 300GB
mounted file-system for contest data and temporary storage. Amazon define this instance type as having 6.5
EC2 compute units (2 64-bit virtual cores of 3.25 ECU each), 17.1GB of memory with “moderate” I/O
capacity. (Source: http://aws.amazon.com/ec2/instance-types/). A test linux system image was made
available, identical to the judging image, for contestants to develop and test programs before submission.

The plots below have been generated from the table of results at www.sequencesqueeze.org. All entries
from authors are shown, not just the best one. Entries that fail to uncompress without mismatch are omitted,
except where an entrant had no programs that were 100% lossless – these were marked appropriately.

The cluster on the far left are the two reference based encoders – Fastqz and Samcomp. These include the
time taken for the entire fastq → compress → decompress → fastq process, so this includes the bowtie2
alignment time. Fasqtz is demonstrably faster at performing alignments.

Figure S2

0.1 0.15 0.2 0.25 0.3 0.35

100

1000

10000

Ratio vs Decompression Time

Competition Baseline
James Bonfield
Ryan Braganza
Yongwook Choi
Seth Hillbrand
Daniel Jones
Markus Krisch
Matt Mahoney
Ibrahim Numanagic*
Armando J. Pinho
Ron Reiter

Ratio

T
im

e
(s

)

Figure S1

0.1 0.15 0.2 0.25 0.3 0.35

100

1000

10000

Ratio vs Compression Time

Competition Baseline
James Bonfield
Ryan Braganza
Yongwook Choi
Seth Hillbrand
Daniel Jones
Markus Krisch
Matt Mahoney
Ibrahim Numanagic*
Armando J. Pinho
Ron Reiter

Ratio

T
im

e
(s

)

http://aws.amazon.com/ec2/instance-types/
http://www.sequencesqueeze.org/

Despite many varied techniques, it is clear from compression times that there is a limit on compressibility,
requiring exponentially more CPU to achieve only a linear and small improvement to ratio. Asymmetry of gzip
(competition baseline) is clear. Most others are symmetric.

In the above plot fqzcomp appears to be the only program matching gzip on decompression speed. We
believe this is likely due to both being I/O bound on the AWS test system. Our own tests show gzip to be
faster at decompression.

Zooming up between ratio 0.17 and 0.19 more clearly shows the tradeoff between time vs ratio for the non-
reference based compressors. From these the Pareto frontier consists of A.J. Pinho’s IEETA entry, D.
Jones’ Quip program and J. Bonfield’s fqzcomp. Programs may have been modified since the entry closed.
(For example, Fqzcomp is 10-40% faster depending on options used.)

Figure S4

0.17 0.17 0.18 0.18 0.19 0.19

100

1000

10000

Ratio vs Decompression Time (zoomed)

Competition Baseline
James Bonfield
Ryan Braganza
Yongwook Choi
Seth Hillbrand
Daniel Jones
Markus Krisch
Matt Mahoney
Ibrahim Numanagic*
Armando J. Pinho
Ron Reiter

Ratio

T
im

e
(s

)

Figure S3

0.17 0.17 0.18 0.18 0.19 0.19

100

1000

10000

Ratio vs Compression Time (zoomed)

Competition Baseline
James Bonfield
Ryan Braganza
Yongwook Choi
Seth Hillbrand
Daniel Jones
Markus Krisch
Matt Mahoney
Ibrahim Numanagic*
Armando J. Pinho
Ron Reiter

Ratio

T
im

e
(s

)

A similar picture is seen with compression ratio vs memory usage. Compression and decompression
memory usage is largely symmetric, so we show only compression memory uage. Note that these memory
figures are as quoted by the SequenceSqueeze web site, which erroneously listed them as the number of
1KB blocks; they are instead the number of 256-byte blocks.

Once again we see we rapidly reach a cliff, requiring exponential growth in memory for a linear decrease in
size. The two reference based compression programs have the requirement of loading the reference
genome into memory.

Figure S6

0.17 0.17 0.18 0.18 0.19 0.19

10000

100000

1000000

10000000

100000000

Ratio vs Compression Memory (zoomed)

Competition Baseline
James Bonfield
Ryan Braganza
Yongwook Choi
Seth Hillbrand
Daniel Jones
Markus Krisch
Matt Mahoney
Ibrahim Numanagic*
Armando J. Pinho
Ron Reiter

Ratio

M
e

m
o

ry
 (

2
5

6
B

)

Figure S5

0.1 0.15 0.2 0.25 0.3 0.35

1000

10000

100000

1000000

10000000

100000000

Ratio vs Compression Memory

Competition Baseline
James Bonfield
Ryan Braganza
Yongwook Choi
Seth Hillbrand
Daniel Jones
Markus Krisch
Matt Mahoney
Ibrahim Numanagic*
Armando J. Pinho
Ron Reiter

Ratio

M
e

m
o

ry
 (

2
5

6
B

)

Bowtie2 alignment usage

Alignments for Samcomp and other SAM based aligners were produced using bowtie2 with the following
script.

#!/bin/sh
bowtie=../prog/bowtie2-2.0.0-beta6/bowtie2
ref=../ce_indices/ce; # Edit as appropriate

mawk 'NR%4 == 1 {gsub(" ","|");gsub("/","~")} {print}' < $1 | \
$bowtie -x $ref -U - --sam-nohead --fast --threads 2 --mm > $1.sam

The purpose of the awk component is to combine a name consisting of both NCBI SRR identifier and original
machine identifier into a single acceptable token. By default Bowtie only used the first word on the
@identifier line and also removes the “/[12]” section. Replacing spaces and slashes before alignment
permits reversal after encoding and decoding to allow lossless storage of identifiers.

Bowtie2 was considerably slower than the built-in aligner used by fastqz, but aligns more data.

Fastqz alignment benchmarks

The following results were obtained on the complete SRR062634 file (6,345,444,769 bytes). Fast mode
decompression and unaligned compression are limited by disk I/O speed. CPU process times are shown in
parenthesis. Fastqz tests were performed on a 2.0 GHz T3200 system with 3 GB under 32 bit Windows
Vista.

Fast Unaligned Fast Aligned

183,313,663 alignments

639,049,273 base sequences 49,174,693 base sequences

251,697,610 headers 251,697,610 headers

867,178,255 quality 867,178,255 quality

1,757,925,138 total 1,351,364,221 total

Time 346s (117s CPU), 371s (111s CPU) Time 1348s, 620s (150s CPU)

Slow Unaligned Slow Aligned (submitted as
ID 99)

105,063,319 alignments

503,239,070 base sequences 30,852,888 base sequences

47,861,283 headers 47,861,283 headers

574,112,937 quality 574,112,937 quality

1,125,213,290 total 757,890,427 total

Time 2357s, 2494s Time 2231s, 1552s

Table S2: FASTQZ v1.5 compression results for SRR062634_1.filt.fastq

The slow, aligned mode was submitted to the compression contest. The compression ratio was 0.1194 on
this public file and 0.1166 on the withheld contest data. Run time was reported as 1218 seconds to compress
and 769 seconds to decompress. Memory usage is reported as 5398224, apparently in units of 256 bytes.
FASTQZ uses about 1.5 GB memory.

Producing the alignment adds significant time to the preprocessing stages. However in full slow compression
mode this reduces the overall time spent due to the data volume presenting to the ZPAQ stage being
smaller.

Fqzcomp parameter space

Fqzcomp has separate parameters controlling the compression level for sequence names (identifiers), base-
calls and quality values. Additionally for base-call compression it may use a single or double stranded model
and it may optionally encode using a single model or with a pair of low + high order models. This gives a
considerable search space to explore.

To choose appropriate low, mid and high compression ratio parameters we produced charts with consistent
name (“n”) and quality (“q”) parameters, along with consistent choices of single vs double (“b”) strand and
single or paired (“+”) model, but varied the sequence (“s”) order to chart lines of compression ratio vs time.
We tested this using two Illumina data sets (shallow and deep) and a 454 data set.

“s*” refers to -s1 to -s8 parameters except on slower compression modes where -s6 to -s8 was used (visible
in the lines that contain just 3 data points). The model used for predicting base-calls is order 7 + x where x is
the value after -s. E.g. -s1 uses an order-8 model and -s8 uses an order-15 model.

“+” refers to -s1+ to -s8+ parameters, indicates the use of an additional shorter order-7 model. No context
mixing is used. Instead the program encodes using either the order-7 model or the order-8 to order-15 model
(as indicated by the -snum), depending on which appears to have the most extreme probability bias (for any
base type, not just the one being encoded).

“b” refers to the -b parameter, specifying that updates to the sequence model should take place on both
strands.

“q1”, “q2” and “q3” refer to the -q1, -q2 and -q3 parameters.
“q1” uses the first 2 quality contexts described in the paper (section 2.1.2)
“q2” uses the first 4 quality contexts.
“q3” uses all 5 quality contexts.

Figure S7: Roche 454 data

Figure S8: Illumina human data (low coverage)

Figure S9: Illumina C.Elegans data (high coverage)

