
NOTE S1. New ROLLOFF statistic

In this note, we consider alternative forms of the ROLLOFF linkage disequilbrium (LD)

statistic [1] for dating population admixture events. We show that the original ROLLOFF

statistic is susceptible to downward bias in the event of a recent population bottleneck,

and we propose a modification of the statistic that is robust against such an effect (Table

S3).

The ROLLOFF technique applies two key insights: first, that admixture creates LD that

decays exponentially as recombination occurs—explicitly, as e−nd, where n is the number

of generations since admixture and d is the genetic distance between SNPs—and second,

that the amount of admixture LD between each pair of SNPs is proportional to the product

of the allele frequency divergences between the ancestral populations at those sites. The

latter observation allows the e−nd admixture LD decay signal to be detected (via a SNP-

pair weighting scheme) and harnessed to infer the mixture date n.

The original ROLLOFF statistic captures admixture LD in the form of SNP autocorrelation.

Defining z(x,y) to be the (Fisher z-transformed) correlation coefficient between SNP geno-

types at sites x and y, ROLLOFF computes the correlation coefficient between values of

z(x,y) and weights w(x,y) over pairs of SNPs binned by genetic distance:

A(d) :=
∑|x−y|≈d z(x,y)w(x,y)√

∑|x−y|≈d z(x,y)2
√

∑|x−y|≈d w(x,y)2
, (1)

the idea being that A(d) ∝ e−nd.

While this setup estimates accurate dates for typical admixture scenarios, it turns out to

be noticeably biased in the case of a recent bottleneck. However, we will show that the
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following modified statistic does not suffer from the bias:

R(d) :=
∑|x−y|≈d z(x,y)w(x,y)

∑|x−y|≈d w(x,y)2 . (2)

(Note that R(d) amounts to taking the regression coefficient of z(x,y) against the weights

w(x,y) for SNP pairs within each bin).

An additional detail of our modified ROLLOFF statistic is that we change z(x,y) to measure

admixture LD as the covariance between SNPs x and y rather than the correlation (i.e.,

it equals the classical LD statistic D rather than the correlation r). We believe the use

of covariance rather than correlation for z(x,y) has little impact on the performance and

properties of the statistic (as it roughly amounts to multiplying by a constant factor) but

makes the statistic more amenable to mathematical analysis.

Explanation of bias from recent bottlenecks

The bias in the original formulation of ROLLOFF (1) introduced by a recent bottleneck can

be readily explained at an intuitive level: the problem is that while the numerator of the

correlation coefficient, ∑|x−y|≈d z(x,y)w(x,y), decays as e−nd as intended, the normalization

term √
∑

|x−y|≈d
z(x,y)2 (3)

also exhibits a decay behavior that confounds the e−nd signal (Figure S3). The reason is

that a strong bottleneck introduces a very large amount of LD, effectively giving z(x,y) a

random large magnitude immediately post-bottleneck that is independent of the distance

between x and y. This LD subsequently decays as e−nd until the magnitude of z(x,y)

reaches the level of random sampling noise (arising from the finite sample of admixed

individuals being used to calculate z). In non-bottlenecked cases, the square-norm of
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z(x,y) is usually dominated by sampling noise, so the normalization term (3) effectively

amounts to a constant, and dividing by (3) has no effect on the decay rate of A(d).

The “regression coefficient” version of the ROLLOFF statistic (2) does not contain the

normalization term (3) and thus does not incur bias from bottlenecks.

Precise effect of genetic drift on the ROLLOFF statistics

We now rigorously derive the above intuition. We will assume in the following calculations

that the ROLLOFF weights are taken as the product of allele frequency divergences δ (x)

and δ (y) in the ancestral mixing populations:

w(x,y) := δ (x)δ (y).

Our reasoning below applies whether we have the true values of δ (x) and δ (y) or com-

puted weights based on related reference populations or PCA loadings. We also assume

that all SNPs are polymorphic ancestrally—i.e., we ignore mutations that have arisen in

the admixed population—and that the SNP ascertainment is unbiased with respect to the

populations under consideration.

For a diploid population of size N with chromosomes indexed by i = 1, . . . ,2N, we set

z(x,y) :=
1

2N

2N

∑
i=1

(Xi−µx)(Yi−µy)

to be the covariance between binary alleles Xi and Yi at sites x and y, respectively. We

assume for ease of discussion that the data are phased; for unphased data, z(x,y) is

essentially a noisier version of the above because of cross terms.

We are primarily interested in the behavior of z(x,y) from one generation to the next. Fix
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a pair of SNPs x and y at distance d and let z0 denote the value of z(x,y) at a certain

point in time. After one generation, due to finite population size and recombination, the

covariance becomes [2]

z1 = z0e−d(1−1/2N)+ ε, (4)

where N is the population size, e−d is the probability of no recombination, (1−1/2N) is a

Bessel correction, and ε is a noise term with mean 0 and variance on the order of 1/N.

Iterating this equation over n generations, the final covariance is

zn = z0e−nde−n/2Ne + εagg,

where Ne is the effective population size over the interval and εagg is a sum of n partially

decayed noise terms.

Now let time 0 denote the time of admixture between two ancestral populations mixing in

proportions α and β := 1−α. (The bottleneck may have occurred either before or after

this point, as long as it does not influence the calculation of the weights). Then E[z0] is:

E[z0] = 2αβδ (x)δ (y),

Assuming the mixture is homogeneous and the distance d is large enough that back-

ground LD can be ignored. (In practice, heterogeneity in the admixed population changes

the above form and results in the addition of an affine term to the ROLLOFF curve which

we explicitly fit. We also typically fit only data from SNP pairs at distance d > 0.5cM to

avoid background LD) .
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We can now compute the modified ROLLOFF statistic:

E[R(d)] = E

[
∑|x−y|≈d z(x,y)δ (x)δ (y)

∑|x−y|≈d δ (x)2δ (y)2

]

≈
∑|x−y|≈d[2αβδ (x)δ (y)e−nde−n/2Ne + εagg]δ (x)δ (y)

∑|x−y|≈d δ (x)2δ (y)2

≈ 2αβe−nde−n/2Ne.

Importantly, in the last step we use the fact that the combined noise term εagg is uncorre-

lated with δ (x)δ (y). Thus, even a strong bottleneck with a low value of Ne only scales R(d)

by the constant factor e−n/2Ne, and the e−nd scaling of the ROLLOFF curve as a function

of d is unaffected.

On the other hand, if we use the original correlation form (1) of the ROLLOFF statistic

A(d), then the numerator still has the form of an exponential decay Ae−nd, but now we

divide this by the norm
√

∑|x−y|≈d z(x,y)2. In the case of a strong bottleneck, z(x,y) =

z0e−nde−n/2Ne + εagg can be dominated by the aggregate noise term εagg. Indeed, if the

bottleneck occurred k generations ago, then the noise terms εi from the time of reduced

population size will have decayed by e−kd since the bottleneck but can still have large

variance if the population size Nbot was very small at the time. In this case, at lower

values of d, E[z(x,y)2] = E[(z0e−nde−n/2Ne + εagg)2] will be dominated by E[ε2
agg] which will

scale approximately as e−2kd/Nbot. Hence, the denominator of A(d) will be significantly

larger at low d than at high d, causing a partial cancellation of the exponential decay of

the ROLLOFF curve and thus a downward bias in the estimated date of admixture.
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