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Metabolic Subsystems 
How the enzymes are functionally organized under the complex conditions prevailing inside the cell, and which systemic mechanisms are involved in the regulation of the cellular enzymatic activity, are two crucial issues for the understanding of the fundamental biomolecular dynamics of cellular life.
Most enzymes are proteins, but a few RNA molecules called ribozymes, ribonucleic acid enzyme, also manifest catalytic activity [1,2].
About the first issue, how the enzymes are functionally organized inside the cell, intensive studies of protein-protein interactions have shown that the internal cellular medium is an assembly of supra-molecular protein complexes [3], e.g., the analyses of the proteome of Saccharomyces cerevisiae have shown that at least 83% of all proteins form complexes (containing from two to eighty-three proteins), and their overall enzymatic structure is formed by a modular network of biochemical interactions between multienzyme complexes [4]. This molecular self-organization occurs in all kinds of cells, both eukaryotes and prokaryotes [5-7]. 

The molecular self-organization of various enzymes in large complexes may allow for the direct transfer of their common intermediate metabolites from the active site of one enzyme to the catalytic centre of the following enzyme without a prior dissociation into the bulk solvent (substrate channelling). This process of non-covalent direct transfer of metabolic intermediates allows for a decrease in the transit time of reaction substrates, originating a faster catalysis through the pathway, preventing the loss of reaction intermediates by diffusion and increasing the efficiency and control of the catalytic processes in the multienzymatic aggregate [8-12]. Substrate channelling may occur within the protein matrix channels or along the electrostatic surface of the enzymes belonging to macromolecular complexes [13-14].

In addition, reversible interactions of multienzyme aggregates with structural proteins and membranes are a common occurrence in eukaryotic cells leading to the emergence of metabolic microcompartments within the soluble phases of cells [15-20]. 

Prokaryotic cells also exhibit microcompartments, but in this case they have outer shells which are composed of thousands of protein subunits and are filled with enzymes belonging to specific metabolic pathways in the interiors [21-22].

The dynamic biomolecular processes by which microcompartmentation is maintained remains unclear.

The self-organization of cooperating enzymes into multienzyme complexes, the substrate channelling and their integration in microcompartments seem to be central features of cellular metabolism, crucial for the regulation and efficiency of enzymatic processes and fundamental for understanding the molecular enzymatic architecture of cell life.

The self-organization at the enzymatic level presents another relevant characteristic: the emergence of functional structures which allows the temporal organization of catalytic processes.

Apart from forming complex catalytic associations, enzymes can exhibit molecular rhythms which constitute one genuine property of the dissipative self-organization and also allow the functional coordination between different multienzyme complexes [23-25]. 
In the far-from-equilibrium conditions prevailing inside the cell, the catalytic dynamics of enzymatic sets present transitions between different quasi-stationary and oscillatory molecular patterns.

When the concentration of a particular metabolite does not present oscillating behavior it is usually called steady state. However, in cellular conditions these patterns exhibit slow variations in concentration over time so they are never completely constant. Therefore, the metabolic system will remain in a quasi-steady state when the concentration of a particular metabolite varies over time in a non-oscillating manner [23].

In cells, the proportion between oscillatory and quasi-stationary behaviours is not known but some experimental observations seem to show that the quasi-steady states are much less frequent than the oscillatory processes [26].

During the last four decades, extensive studies of biochemical dynamical behaviors, both in prokaryotic and eukaryotic cells, have revealed that in cellular conditions a spontaneous emergence of molecular oscillations occurs in most of the fundamental metabolic processes. For instance, specific biochemical oscillations (ultradian rhythms) were reported to occur in: free fatty acids [27], NAD(P)H concentration [28], biosynthesis of phospholipids [29], cyclic AMP concentration [30], ATP [31] and other adenine nucleotide levels [32], intracellular glutathione concentration [26], actin polymerization [33], ERK/MAPK metabolism [34], mRNA levels [35], intracellular free amino acid pools [36], cytokinins [37], cyclins [38], transcription of cyclins [39], gene expression [40-43], microtubule polymerization [44], membrane receptor activities [45], membrane potential [46], intracellular pH [47],  respiratory metabolism [48], glycolysis [49], intracellular calcium concentration [50], metabolism of carbohydrates [51], beta-oxidation of fatty acids [52], metabolism of mRNA [53], tRNA [54], proteolysis [55] urea cycle [56] Krebs cycle [57] mitochondrial metabolic processes [58] nuclear translocation of the transcription factor [59] amino acid transports [60] peroxidase-oxidase reactions [61] protein kinase activities [62] and photosynthetic reactions [63].

In addition, experimental observations in Saccharomyces cerevisae during continuous culture have shown that practically the majority of metabolome also show oscillatory dynamics [64].

Likewise, it has been observed that genomic activity shows multioscillatory behaviors. For instance, considering only the transcription processes, it has been reported that at least 60% of all gene expression oscillates with an approximate period of 300 min [65]. Other experimental observations have shown that practically the entire transcriptome exhibits low-amplitude oscillatory behavior [66] and this phenomenon has been described as a genomewide oscillation [26,43,64-68].

Evidence that the cells exhibit multi-oscillatory metabolic processes with fractal properties has been reported, and these dynamic behaviors seem to be consistent with scale-free dynamics spanning a wide range of frequencies of at least three orders of magnitude [58].

The temporal organization of the metabolic processes in terms of rhythmic phenomena covers a wide time window with period lengths ranging from milliseconds [69], to seconds [70], minutes [71] and hours [72].

The transition from simple periodic behavior to complex oscillatory phenomena, including bursting (oscillations with one large spike and series of secondary oscillations) [73] and chaos (irregular oscillations), is often observed in metabolic behaviors [74]. 
From a dynamic point of view, these multienzymatic associations represent dissipative structures in which some functional integrative processes emerge, allowing the reactive coordination between their catalytic parts [23,25].
As a result of the dissipative self-organization, each multienzymatic complex shapes a catalytic entity as whole, where spatial molecular rhythms, temporal molecular oscillations and quasi-steady state patterns can spontaneously emerge. 

In addition, the self-organization and the self-assembly processes may allow for reversible interactions between the multienzymatic system and other molecular structures, leading to the formation of a metabolic microcompartment, which provides a discrete reactive space where the intermediate metabolites can be protected from being consumed by competing reactions catalyzed by other multienzyme structures. In the multienzymatic complex, the increase in efficiency and control of the associative catalytic activity can also be improved by other processes such as metabolic channeling [15].

These self-organized multienzymatic complexes associated with other non-catalytic biomolecular structures are called metabolic subsystems [23].

The dissipative metabolic subsystems are thermodynamically advantageous biochemical structures, which act as individual catalytic entities, forming unique, well-defined dynamical systems and their activity is autonomous with respect to the other self-organized multienzymatic subsystems [23,75].

The dissipative mechanisms that provide the spatio-temporal self-organization of the metabolic subsystem activities find their roots in the non-linear regulatory processes which control the dynamics of their irreversible catalytic reactions [76,77].

The non-linearity associated to the irreversible catalytic reactions is the main mechanism which might allow the dissipative metabolic subsystem to work far from the thermodynamic equilibrium [77,78].

Once the irreversible catalytic system operates sufficiently far-from-equilibrium due to the nonlinear nature of its kinetics, the quasi-steady state may become unstable, leading to different dynamical behaviors, and new instabilities can originate the emergence of complex functional patterns [76,77,79]. 

Dissipative self-organization of multienzymatic complexes allows for the emergence of a rich variety of catalytic patterns and comprises an infinite number of distinct activity regimes [75].

Each metabolic subsystem represents a highly integrated catalytic unit [80], which exhibits the spontaneous self-organization of its enzymatic activity and seems to constitute the fundamental catalytic node of the cellular metabolism networks [80].

The metabolic subsystem seems to be the basic catalytic element for the reactive transformation of cellular metabolic processes, and they are the basis for more complex biomolecular dissipative self-organization at superior structural and functional levels, as for example the Intracellular Energetic Units (ICEU) [81] and the synaptosomes [82].
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