Table S3. jModelTest selections for mitochondrial and nuclear data partitions.

Mitochondrial sequences		Nuclear sequences	
Partition ¹	Model ²	Partition	Model ²
Protein codons		Protein codons	·
1 st codon positions	GTR+I+ Γ	1 st codon positions	TIM+ Γ
2 nd codon positions	K81uf+I+ Γ	2 nd codon positions	TVM+ Γ
3 rd codon positions	TIM+ Γ	3 rd codon positions	TVMef+ Γ
RNA structure		Genes	
Stem positions	SYM+I+ Γ	BRCA1	TrN+Γ
Loop positions	TIM+I+ Γ	ApoB	TrN+Γ
		IRBP	TVM+Γ
		RAG1	HKY+I+ Γ
		vWF	K80+I+ Γ

¹ Meredith et al. (2008) modelled the nuclear data as five gene-wise partitions, whereas we employ three codon-wise partitions. Both partitioning schemes identified the same ML tree topology for Nuc₁₇ (Figure 1B). However codon-wise partitioning provides higher likelihood (in PAUP*) with fewer free parameters (–13,107.338, df=113) than gene-wise partitioning (–13,115.969, df=184). Partitioning by both gene and codon resulted in several partitions with far more parameters requiring estimation than variable sites and hence, was considered too parameter rich.

Reference

Meredith RW, Westerman M, Springer MS (2008) A phylogeny and timescale for the living genera of kangaroos and kin (Macropodiformes: Marsupialia) based on nuclear DNA sequences. Aust J Zool 56: 395-410.

² The most general of either the hierarchical likelihood ratio test or Akaike Information Criterion model suggestions is reported.