1 Notation

Symbol	Name	Context	Description
x	Boolean Automaton	Automata	Binary-state automaton
k	Number of inputs of x	Automata	How many inputs determine the transitions of an automaton x
F	Look-up table (LUT) of x	Automata	The transition function of x represented as a LUT (2^{k} entries).
f_{α}	LUT entry in F	Automata	k-tuple combination of input states i.e. condition and corresponding transition
c_{α}	condition part in a LUT entry f_{α}	Automata	k-tuple combination of input states i.e. condition
s_{α}	transition in a LUT entry f_{α}	Automata	Boolean state prescribed as the transition in f_{α}
\mathcal{B}	Boolean network	Networks	A graph of N automata with directed edges (source node is input of end node)
X	set of automata in \mathcal{B}	Networks	set of Boolean automata that constitute a BN \mathcal{B}
n	number of nodes in \mathcal{B}	Networks	$n=\|X\|$
\boldsymbol{x}	network configuration	Networks	collection of the states of all nodes in a BN \mathcal{B}
X_{i}	set of inputs of node x_{i} in \mathcal{B}	Networks	Set of input nodes of x_{i}
k_{i}	in-degree of x_{i}	Networks	Cardinality of X_{i}
F_{i}	Look-up table of x_{i}	Networks	Transition function represented as a LUT
$f_{i: \alpha}$	LUT entry in F_{i}	Networks	Sub-indices i and α, separated by ' $:$ ', are used to specify node and entry.
\mathcal{A}_{i}	An attractor of \mathcal{B}	Networks	A specific (index i) fixed-point or periodic attractor of a BN \mathcal{B}.
$\sigma(\boldsymbol{x}) \rightsquigarrow \mathcal{A}$	Dynamic trajectory of \boldsymbol{x} to \mathcal{A}	Networks	This notation is used to represent that the trajectory of some configuration \boldsymbol{x} is known to converge to \mathcal{A}
\#	Wildcard symbol	Wildcard	If this symbol appears in a condition, the variable it represents can be in any state.
F^{\prime}	wildcard-schema redescription of F	Wildcard	LUT where entries are wildcard schemata
f_{v}^{\prime}	a wildcard schema in F^{\prime}	Wildcard	An entry in F^{\prime} is like an entry in F but its condition part can have wildcard symbols.
Υ_{v}	Entries $f_{\alpha} \in F$ in f_{v}^{\prime}	Wildcard	The set of original LUT entries in F redescribed by a single wildcard schema $\Upsilon_{v} \equiv\left\{f_{\alpha}: f_{\alpha} \mapsto f_{v}^{\prime}\right\}$
${ }^{\circ}{ }_{m}$	Position-free symbol	2-Symbol	If a variable in the condition part of a schema is marked with this symbol, it can exchange places with any other variable in the same schema marked with the same symbol. Index m used to distinguish subsets of identically-marked inputs
β	Depth of search for two-symbol schemata	2-Symbol	Defines the minimum number of wildcard schemata in a two-symbol redescription.
$F^{\prime \prime}$	2-symbol redescription of F	2-Symbol	LUT where entries are two-symbol schemata
$f_{\theta}^{\prime \prime}$	a 2-symbol schema in $F^{\prime \prime}$	2-Symbol	An entry in $F^{\prime \prime}$ is like an entry in F but its condition part can have wildcard and position-free symbols.
Θ_{θ}	Entries $f_{\alpha} \in F: f_{\alpha} \longmapsto f_{\theta}^{\prime \prime}$	2-Symbol	The set of original LUT entries in F redescribed by a single 2-symbol schema $\Theta_{\theta} \equiv\left\{f_{\alpha}: f_{\alpha} \mapsto f_{\theta}^{\prime \prime}\right\}$
Θ_{θ}^{\prime}	Schemata $f_{v}^{\prime} \in F^{\prime}: f_{v}^{\prime} \mapsto f_{\theta}^{\prime \prime}$	2-Symbol	The set of wildcard schemata in F^{\prime} redescribed by a single 2-symbol schema $\Theta_{\theta}^{\prime} \equiv\left\{f_{v}^{\prime}: f_{v} \mapsto f_{\theta}^{\prime \prime}\right\}$
X_{ℓ}	set of literal enputs in a schema $f^{\prime \prime}$	2-Symbol	The variables in the condition part of schema $f^{\prime \prime}$ that are specified in a Boolean state (not wildcard)
η_{ℓ}	size of literal-enput set in a schema $f^{\prime \prime}$	2-Symbol	$n_{\ell}=\left\|X_{\ell}\right\|$
X_{ℓ}^{s}	state-s literal enputs in $f^{\prime \prime}$	2-Symbol	Subset $X_{\ell}^{s} \subset X_{\ell}$ of literal enputs in a specific state $s: s \in\{0,1\}$
X_{g}	group-invariant enput in a schema $f^{\prime \prime}$	2-Symbol	The set variables in the condition part of schema $f^{\prime \prime}$ that are marked with an identical position-free symbol, in every state they can take
X_{g}^{s}	elements of X_{g} in state s	2-Symbol	This notation is used to refer to the members of a group-invariant enput instantiated in a specific state s, that is $X_{g}^{s}=\left\{\forall x_{i} \in X_{g} \wedge x_{i}=s\right\}$
η	number of group-invariant enputs in $f^{\prime \prime}$	2-Symbol	Number of subsets of inputs marked with a distinct position-free symbol
n_{g}	size of a single group-invariant enput g in $f^{\prime \prime}$	2-Symbol	Number of inputs marked with the position-free symbol in g.
n_{g}^{s}	a sub-constraint in X_{g} on state $s \in\{0,1\}$	2-Symbol	specifies a group-invariant constraint in the set X_{g}, at least n_{g}^{s} variables must be in state s

Symbol	Name	Context	Description				
τ	Threshold of a t-unit	Canalizing Maps	The firing activity threshold of a transition unit in the canalizing map of an automaton x				
$\underline{k}_{\mathrm{e}}(x)$	lower-bound effective connectivity of x	Automata control	Smallest number of inputs that, on average, determine the transition of x when the states of all its inputs are equi-probable				
$\bar{k}_{\mathrm{e}}(x)$	upper-bound effective connectivity of x	Automata control	Maximum number of inputs that, on average, are needed to determine the transition of x when the states of all its inputs are equi-probable				
$k_{\mathrm{r}}(x)$	input redundancy in x	Automata control	$k_{\mathrm{r}}(x)=k(x)-k_{\mathrm{e}}(x)$				
$\underline{k}_{\mathbf{s}}(x)$	lower-bound input symmetry of x	Automata control	Smallest number of inputs with with, on average, an input can 'switch places with' to determine the transition of x when the states of all its inputs are equi-probable				
$\bar{k}_{\mathrm{s}}(x)$	upper-bound input symmetry of x	Automata control	Largest number of inputs with with, on average, an input can 'switch places with' to determine the transition of x when the states of all its inputs are equi-probable				
$\hat{\boldsymbol{x}}$	partial configuration	dynamic unfolding	A configuration of the BN where a subset of nodes is specified (in a Boolean state) while other nodes are unknown				
$\sigma(\hat{\boldsymbol{x}}) \rightsquigarrow \mathcal{P}$	dynamics from $\hat{\boldsymbol{x}}$ leads to outcome \mathcal{P}	dynamic unfolding	Dynamic trajectory from $\hat{\boldsymbol{x}}$ ends in outcome pattern \mathcal{P} (which can be a full attractor, or a partially specified steady-state configuration).				
\mathcal{P}	target outcome	Minimal Configs.	A target pattern comprises any configurations that share some property of interest. It can contain a single attractor, or a set of outcome patterns.				
\boldsymbol{x}^{\prime}	minimal configuration	Minimal Configs.	A configuration of the BN where a subset of nodes is specified (in a Boolean state) while other nodes are unknown such that $\sigma\left(\boldsymbol{x}^{\prime}\right) \rightsquigarrow \mathcal{P}$				
$\left\\|\boldsymbol{X}^{\prime}\right\\|$ or $\left\\|\boldsymbol{X}^{\prime \prime}\right\\|$	Number of configurations \boldsymbol{X} redescribed by a set of MCs	Minimal Configs.	The cardinality $\|\boldsymbol{X}\|$ of the set of configurations redescribed by a set of MCs may be counted exactly, or sampled.				
$\sigma\left(\boldsymbol{x}^{\prime}\right) \rightsquigarrow \mathcal{P}$	input-output relationship between a MC \boldsymbol{x}^{\prime} and the target pattern it unfolds to, \mathcal{P}	Minimal Configs.	Dynamic trajectory of a minimal configuration \boldsymbol{x}^{\prime} ends in target pattern \mathcal{P} (this can be a single (full or partial) configuration, or a set of these that defines a pattern).				

