1 Notation

Symbol	Name	Context	Description
Symbol x	Name Boolean Automaton	Automata	Description Binary-state automaton
			How many inputs determine the transitions of an au-
k	Number of inputs of <i>x</i>	Automata	tomaton x
F	Look-up table (LUT) of x	Automata	The transition function of x represented as a LUT $(2^k$ entries).
f_{lpha}	LUT entry in F	Automata	<i>k</i> -tuple combination of input states i.e. <i>condition</i> and corresponding <i>transition</i>
c_{lpha}	condition part in a LUT entry f_{lpha}	Automata	k-tuple combination of input states i.e. condition
s_{lpha}	transition in a LUT entry f_{lpha}	Automata	Boolean state prescribed as the transition in f_{lpha}
B	Boolean network	Networks	A graph of N automata with directed edges (source node is input of end node)
X	set of automata in \mathcal{B}	Networks	set of Boolean automata that constitute a BN \mathcal{B}
n m	number of nodes in $\mathcal B$ network configuration	Networks Networks	n = X collection of the states of all nodes in a BN \mathcal{B}
$\frac{x}{X_i}$	set of inputs of node x_i in \mathcal{B}	Networks	Set of input nodes of x_i
k_i	in-degree of x_i	Networks	Cardinality of X_i
F_i	Look-up table of x_i	Networks	Transition function represented as a LUT
	LUT entry in F_i	Networks	Sub-indices i and α , separated by ':', are used to spec-
$f_{i:lpha}$		INCLIVUINS	ify node and entry.
\mathcal{A}_i	An attractor of ${\cal B}$	Networks	A specific (index i) fixed-point or periodic attractor of a BN \mathcal{B} .
$\sigma(oldsymbol{x}) \rightsquigarrow \mathcal{A}$	Dynamic trajectory of x to ${\mathcal A}$	Networks	This notation is used to represent that the trajectory
			of some configuration x is known to converge to A If this symbol appears in a condition, the variable it
#	Wildcard symbol	Wildcard	represents can be in any state.
F'	wildcard-schema redescription of F	Wildcard	LUT where entries are wildcard schemata
f'_v	a wildcard schema in F'	Wildcard	An entry in F' is like an entry in F but its condition
Jv		· · · · · · · · · · · · · · · · · · ·	part can have wildcard symbols.
Υ_v	Entries $f_{\alpha} \in F$ in f'_{υ}	Wildcard	The set of original LUT entries in F redescribed by a single wildcard schema $\Upsilon_{\upsilon} \equiv \{f_{\alpha} : f_{\alpha} \rightarrow f'_{\upsilon}\}$
0 _m	Position-free symbol	2-Symbol	If a variable in the condition part of a schema is marked with this symbol, it can exchange places with any other variable in the same schema marked with the same symbol. Index m used to distinguish subsets of identically-marked inputs
β	Depth of search for two-symbol schemata	2-Symbol	Defines the minimum number of wildcard schemata in
<i>F''</i>	2-symbol redescription of F	2-Symbol	a two-symbol redescription.
			LUT where entries are two-symbol schemata An entry in F'' is like an entry in F but its condition
$f_{ heta}^{\prime\prime}$	a 2-symbol schema in F''	2-Symbol	part can have wildcard and position-free symbols. The set of original LUT entries in F redescribed by a
$\Theta_{ heta}$	Entries $f_{\alpha} \in F : f_{\alpha} \rightarrowtail f''_{\theta}$	2-Symbol	single 2-symbol schema $\Theta_{ heta} \equiv \{f_{lpha}: f_{lpha} ightarrow f_{ heta}''\}$
Θ'_{θ}	Schemata $f'_arphi \in F': f'_arphi ightarrow f''_ heta$	2-Symbol	The set of wildcard schemata in F' redescribed by a single 2-symbol schema $\Theta'_{\theta} \equiv \{f'_{v} : f_{v} \mapsto f''_{\theta}\}_{q''}$
X_{ℓ}	set of literal enputs in a schema $f^{\prime\prime}$	2-Symbol	The variables in the condition part of schema f" that are specified in a Boolean state (not wildcard)
η_ℓ	size of literal-enput set in a schema $f^{\prime\prime}$	2-Symbol	$n_{\ell} = X_{\ell} $
X^s_ℓ	state- s literal enputs in $f^{\prime\prime}$	2-Symbol	Subset $X_{\ell}^s \subset X_{\ell}$ of literal enputs in a specific state $s: s \in \{0, 1\}$
X_g	group-invariant enput in a schema $f^{\prime\prime}$	2-Symbol	The set variables in the condition part of schema f'' that are marked with an identical position-free symbol, in every state they can take
X_g^s	elements of X_g in state s	2-Symbol	This notation is used to refer to the members of a group-invariant enput instantiated in a specific state s , that is $X_g^s = \{\forall x_i \in X_g \land x_i = s\}$
η	number of group-invariant enputs in $f^{\prime\prime}$	2-Symbol	Number of subsets of inputs marked with a distinct position-free symbol
n_g	size of a single group-invariant enput $g \mbox{ in } f^{\prime\prime}$	2-Symbol	Number of inputs marked with the position-free symbol in g .
n_g^s	a sub-constraint in X_g on state $s \in \{0,1\}$	2-Symbol	specifies a group-invariant constraint in the set $X_g,$ at least n_g^s variables must be in state s

Symbol	Name	Context	Description
τ	Threshold of a t-unit	Canalizing Maps	The firing activity threshold of a transition unit in the canalizing map of an automaton x
$\underline{k}_{\mathrm{e}}(x)$	lower-bound effective connectivity of \boldsymbol{x}	Automata control	Smallest number of inputs that, on average, determine the transition of x when the states of all its inputs are equi-probable
$\overline{k}_{ m e}(x)$	upper-bound effective connectivity of \boldsymbol{x}	Automata control	Maximum number of inputs that, on average, are needed to determine the transition of x when the states of all its inputs are equi-probable
$k_{ m r}(x)$	input redundancy in x	Automata control	$k_{ m r}(x)=k(x)-k_{ m e}(x)$
$\underline{k}_{\mathrm{s}}(x)$	lower-bound input symmetry of \boldsymbol{x}	Automata control	Smallest number of inputs with with, on average, an in- put can 'switch places with' to determine the transition of x when the states of all its inputs are equi-probable
$\overline{k}_{ m s}(x)$	upper-bound input symmetry of \boldsymbol{x}	Automata control	Largest number of inputs with with, on average, an input can 'switch places with' to determine the transition of x when the states of all its inputs are equi-probable
\hat{x}	partial configuration	dynamic unfolding	A configuration of the BN where a subset of nodes is specified (in a Boolean state) while other nodes are <i>un-known</i>
$\sigma(\hat{oldsymbol{x}}) \rightsquigarrow \mathcal{P}$	dynamics from \hat{x} leads to outcome ${\cal P}$	dynamic unfolding	Dynamic trajectory from \hat{x} ends in outcome pattern \mathcal{P} (which can be a full attractor, or a partially specified steady-state configuration).
\mathcal{P}	target outcome	Minimal Configs.	A target pattern comprises any configurations that share some property of interest. It can contain a single attrac- tor, or a set of outcome patterns.
x'	minimal configuration	Minimal Configs.	A configuration of the BN where a subset of nodes is specified (in a Boolean state) while other nodes are <i>unknown</i> such that $\sigma(x') \rightsquigarrow \mathcal{P}$
$\ X'\ $ or $\ X''\ $	Number of configurations $oldsymbol{X}$ redescribed by a set of MCs	Minimal Configs.	The cardinality $ \mathbf{X} $ of the set of configurations redescribed by a set of MCs may be counted exactly, or sampled.
$\sigma(oldsymbol{x}') \rightsquigarrow oldsymbol{\mathcal{P}}$	input-output relationship between a MC x' and the target pattern it unfolds to, ${\cal P}$	Minimal Configs.	Dynamic trajectory of a minimal configuration x' ends in target pattern \mathcal{P} (this can be a single (full or partial) configuration, or a set of these that defines a pattern).