Supplementary Information
DMH Methodology

The DMH workflow was first described by Huang et al. [1]. Genomic DNA was
digested with methylation unspecific restriction enzymes [2], with short fragments
removed (<80 bp) in the purification step. Next, DNA oligomer adapters were ligated
to restricted DNA fragments, which were then digested using four different CpG
methylation specific restriction enzymes [2]. In a subsequent PCR step, only uncut
(unmethylated) fragments were thus amplified as the digested (methylated) DNA
does not have both 5’ and 3’ adapters for PCR primer binding [1]. PCR products were
then hybridised to the custom-designed DMH chip based on the CustomSeq
microarray (Affymetrix, USA).

CpG Quality Control — Replication Cohort

Quality control of the samples resulted in exclusion of seven samples including one
sample with low bisulphate bisulphite (BS) conversion efficiency (i.e. BS control
intensity values <4000) and six based on CpG coverage (requiring at least 95%
coverage per sample), using the Beadstudio p-values of detection of signal above
background. Probes that failed (N = 1459) and were not reported by the BeadStudio

software in at least one individual were discarded.

A singular value decomposition (SVD) was performed to determine the nature of the
largest components of variation in beta values as previously described [3]. By
correlating the top ten principal components to known experimental factors it was
shown that beadchip, BS conversion efficiency (as assessed using the built-in BS
conversion efficiency controls) and DNA input contributed significantly to the
variation in beta levels and were together with age included as covariates in

subsequent analysis.

SNP Quality Control — Replication Cohort
We applied similar exclusion criteria to each of the three datasets. Samples were
excluded if (i) sample call rate <98%, (ii) heterozygosity across all SNPs >2 SD from

the sample mean; (iii) evidence of non-European ancestry as assessed by PCA



comparison with HapMap3 populations; (iv) observed pairwise IBD probabilities
suggestive of sample identity errors. SNPs were excluded if (i) Hardy-Weinberg p-
value < 10, assessed in a set of unrelated samples; (ii) MAF < 1%, assessed in a set
of unrelated samples; (iii) SNP call rate < 97% (SNPs with MAF > 5%) or <99% (for 1%
< MAF < 5%).

We then merged the three datasets after performing pairwise comparison between
datasets. Further samples and SNPs were excluded if (i) concordance at duplicate
samples <1%,; (ii) concordance at duplicate SNPs <1%; (iii) visual inspection of QQ
plots for logistic regression applied to all pairwise dataset comparisons; (iv) Hardy-
Weinberg p-value < 10-6, assessed in a set of unrelated samples; (v) observed

pairwise IBD probabilities suggestive of sample identity errors.
Statistical Methods — Methylation / Phenotype association

We used the R limma package, a package for the efficient analysis of microarray data
to fit the following linear models to test for association with Metabolic syndrome

case/control status (Eq. 1), BMI (Eq. 2), Age (Eq. 3) and gender (Eq. 4):
Y = Bo + BuetsynXmetsyn T BageXage + BgenderXgendaer + € (1)
Y = Bo + BemiXemr + BageXage + BgenderXgender + € (2)
Y = Bo + BageXage + BemiXemr + BgenderXgender + € (3)
Y = Bo + BgenderXgender + BemiXpmr + BageXage + € (4)

where y is the methylation score at each probe set and the error term is

€ ~ N(0,0?) for each marker independently. The method in limma then shrinks the
probe set specific variances towards a common expected variance and calculates a
moderated t-statistic, and the corresponding p-value for Hy: Breqictor = 0 is then
calculated. Subsequently, multiple testing was corrected for by applying a false

discovery rate (FDR) threshold of 5% (using the qvalue package in R [4]).



Statistical Methods — Primary Cohort meQTL association testing

To test for association of methylation with each SNP in £500 kb region around each
of the 29,441 filtered DMH regions, we applied a linear additive model using as
described in the PLINK manual. The allelic dosage for each individual i at each SNP

marker g was calculated as
Xgi = D1+ 2D2 (1)

where p, ; and p,;are the posterior probabilities for the imputed genotypes AB
(heterozygote) and BB (homozygote for the alternative allele), respectively. We then
regressed methylation status at each probe set y with the allelic dosage using the

following linear model:

y= ﬂo + ﬁgxg + lgagexage + ﬂgenderxgender + ﬁMetSyanetSyn +e& (2)

where the error term is € ~ N (0, 0%) for each marker independently. We then
B

e where

calculated a p-value for Hy: f; = 0 by calculating the Wald statistic

se(By)? is the standard error in the estimate of 8. This was then compared to a chi-
squared distribution (Wald test). Multiple testing was corrected for by applying a

false discovery rate (FDR) threshold of 5% (using the gqvalue package in R [4])
Statistical Methods — Replication Cohort

Similarly, we calculated the allelic dosage for each SNP marker in the replication and

fitted the following linear mixed-effect model allowing for twin relatedness:
y= ﬁo + ngg + lgagexage + ﬁcxc
+ﬁbatchxbatch + BBSCXBSC + ZfamilyUfamily + ZzygosityUzygosity t+e (3)

where x, is the concentration after bisulphite conversion, x;,:cn is the batch, xgg¢
the bisulphite conversion efficiency measured by the array-internal control, the
which is

random effect Uy 4y, common to a pair of twins and the random effect Uy,,4,

shared by a pair of monozygotic twins but not by a pair of dizygotic twins [5].
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We then calculate ) and compare this to a one-tailed t-test in the direction of

the original association, using a Gaussian null distribution as an approximation to the

true null distribution (a t-distribution with 176 degrees of freedom)
Power Calculations

In this study we calculated the effect sizes that were detectable with our sample size,
N = 38, and a significance level specified in the multiple-testing setting. We used a
conservative Bonferroni correction strategy, meaning that if we test 27,578 DMH
probe sets the adjusted significance level is a = 0.05 / 27,578, i.e. a ~ 1e-6 (Figure A).
At a fixed o of 1e-6 and 80% power we are able to detect MetSyn case/control
associations down to a standardized effect size of 2.16. We further estimated the
detectable effect size in units of methylation score for each probe set, since the
standardized effect size is scale-free and the within-group standard deviation (SD)
can vary across probe sets using the following approach: (i) We calculated the
pooled within-group SD at each probe set; (ii) multiplied the pooled within-group SD
at each probe set with 2.16 (see above) and (iii) and then calculated for the
proportion of probe sets were we have 80% power to detect methylation differences
between groups of 0.05 and 0.10 methylation score. In our data, we are thus
powered at 80% to detect effect sizes of 0.05 differential methylation at 14 of 27,718
probe sets and 0.10 methylation score difference at 4123 of 27,718 probe sets,
where 0.05 and 0.10 here refer to difference in methylation score (not statistical

significance level) between cases and controls.



MetSyn Case/Control association, N = 38
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Figure A: Power calculation curve of power against standardised effect size, at fixed N=38 and
alpha=1e-6.

Using the equivalent assumptions of a and power for BMI, which is a quantitative
trait, we are powered to detect methylation-BMI associations explaining 57% of
variation in BMI (Figure B, black curve). We are well aware that we are
underpowered to detect subtle MetSyn and BMI effects in this relatively small study,
which can explain the lack of detection of significant associations. However, our
main objective of this study was meQTL analysis, where effects sizes are expected to
be larger, and where we are better powered to detect significant associations, as our

results also indicate.

Using similar assumption as above, and adjusting for 149 tests, we have 80% power
to detect SNP-mRNA associations explaining 41% of variation in expression (Figure B,
blue curve). Again, we are limited by the small sample size to detect associations of

this magnitude.



Continuous Trait association, N = 38
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Figure B: Power calculation curve of power against percent variance explained, at fixed N=38 and
two fixed alpha levels. The curves arise from differences in multiple testing.
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