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microRNA Cq values in the ExiqonTM qPCR platform

The ExiqonTM qPCR platform offers a two step procedure for the quantification of microRNAs, by combining a uni-
versal reverse transcript reaction (first step) with LNATM(Locked Nucleic Acid) enhanced PCR primers. In LNATM

molecules a methylene bridge connects the 2’-O atom and the 4’-C atome locking the ribose ring; incorporation of
LNATMmonomers in nucleic acid duplexes, increases the melting temperature by 2-8 oC/LNATMmonomer, thus
improving the thermal stability of the complex and increasing the binding affinity and the hybridization specificity
for short target sequences such as microRNAs. Due to the universal amplification step one would expect all that
signals from RNAs analyzed in the same panel to be related, calling for a normalization procedure to address this
co-variability. This normalization was effected simultaneously with the estimation of the ΔCqvalues using linear
mixed effects (LME) regression models. These models were specified separately for each of the three comparisons
considered in the manuscript in the WinBUGS programming language and estimated using Monte Carlo Markov
Chain simulations.

Matched samples from patients with microalbuminuria (MA)

This analysis concerns microRNA profiles in patients who will develop either intermittent (IMA) or persistent
(PMA) microalbuminuria at two different occasions: a) before the development of MA i.e. when the urine appears
to be “normal” by conventional clinical laboratory testing and b) upon development of microalbuminuria. For this
analysis, a hierarchical linear mixed model was used accounting for the explicit matching between MA patients in
pairs, as well as the implicit matching between normoalbuminuric and microalbuminuric samples from the same
patient was used. By employing a random effect for patient pairs, the latter were allowed to have their own specific
expression for each microRNA of interest, constrained to be normally distributed around the overall mean (random
intercept model). Such a modification allows the model to account for confounding factors co-varying with the
variables used in matching (age, sex, diabetic control i.e. level of Hemoglobin A1C) that could potentially affect
microRNA expression. The fixed effects part of the regression equations in this model reflect the clinical classification
of the patients (IMA v.s. PMA) and the laboratory classification of the corresponding samples (normoalbuminuric
or microalbuminuric) through indicator variables:

The corresponding set of regression coefficients is shown in Table 2:

Tab. 1: Indicator variables used in the analysis of samples from patients with microalbuminuria

Patient Group Sample Classification XbP
i XfI

i XfP
i

IMA Normoalbuminuric 0 0 0
PMA Normoalbuminuric 1 0 0
IMA Microalbuminuric 0 1 0
PMA Microalbuminuric 1 0 1

1
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Tab. 2: Regression coefficients in the analysis of samples from patients with microalbuminuria

Regression
Coefficient

Interpretation

βc,bP
k

ΔCq between PMA and IMA in
normoalbuminuric (baseline) urine
samples

βc,fI
k

ΔCqbetween microalbuminuric
(follow-up) and normoalbuminuric
(baseline) urine samples in IMA
patients

βc,fP
k

ΔCqbetween microalbuminuric
(follow-up) and normoalbuminuric
(baseline) urine samples in PMA
patients

By redefining the contrast of the design matrix implied by the indicator variables in Table 1 one can obtain a
the new set of regression coefficients with slightly different interpretation (shown along with their relation to the
coefficients of Table 2):

Tab. 3: Equivalent regression analysis of samples from IMA and PMA patients

Indicator Variable Regression Coefficient Interpretation

ZbP
i = XbP

i βc,bP
k

ΔCq between PMA and IMA in
normoalbuminuric (baseline) urine
samples

ZMA
i = XfI

i βc,MA
k = βc,fI

k

ΔCqbetween microalbuminuric
(follow-up) and normoalbuminuric
(baseline) urine samples in IMA
patients

ZMA×P
i = XfI

i +XfP
i βc,MA×P

k = βc,fP
k − βc,fI

k

ΔCqbetween microalbuminuric urine
samples in PMA patients relative to
microalbuminuric urine samples in the
IMA group

When fitting the model we adopted the parameterization of Table 1 due to the higher numerical stability and
better convergence of the Monte Carlo simulations. In order to compare microalbuminuric samples between patients
with PMA and IMA without refitting, we formed the difference between the the second and the third coefficients
of Table 2 after convergence had been achieved.

The adopted model assumes the quantification cycle value of each of the control reactions (Y c
i ) to be normally

distributed around its mean µc
i with a standard deviation σw(measurement noise):

Y c
i ∼ N(µc

i , σ
2
w)

The mean is related to an experimental panel factor, Ec(IDi), and a control PCR specific factor Bc(IDi, Ri)
according to the regression equation:

µc
i = Ec(IDi) +Bc(IDi, Ri)

where IDi is the individual sample the ith control measurement came from, while Ri indexes the well number
of the three microRNAs (hsa-miR-423-5p, hsa-miR-103, hsa-miR-191 ) the three small RNAs (U6, SNORD38B,
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SNORD39A)1 and the interplate calibrator UniSP3. The panel factors were modelled as normal random effects:

Ec(j) ∼ N(0, σ2
B), j = 1, . . . , N c

which were used to effect a panel specific normalization of non-control Cq values. In this equation, the standard
deviation σB can be interpreted as the magnitude of the noise in quantification cycle values due to the universal
amplification step and run-to-run variability in signal acquisition by the real time PCR system. The control PCR
specific factors are modelled as an additional level in the hierarchical model by exploiting the replicate PCR reactions
(NR reactions in each plate using NP distinct primer sets). In the ith individual sample these are assumed to be
normally distributed around their mean µPCR

i,RmiR(j) with a standard deviation σID
RmiR(j):

Bc(i, j) ∼ N(µPCR
i,RmiR(j), σ

ID
RmiR(j)), i = 1, . . . , NID, j = 1, . . . , NR

in which RmiR(j) maps the jth PCR reaction to the corresponding primer set. To account for clinical, and laboratory
classification of samples and the matching between pairs, the means were resolved with the aid of the regression:

µPCR
i,k = αc

k +a P
c
Pairi,k + βc,bP

k ·XbP
i + βc,fI

k ·XfI
i + βc,fP

k ·XfP
i , k = 1, . . . , NP

aP
c
j,k ∼ N(0, σc

i ), k = 1, . . . , NP , j = 1, . . . , Npairs

in which αc
k is the expression level of the kth control reaction and aP

c
j,k is the (random) intercept of the kth control

reaction in the the jth pair of patients. A slightly different regression was used for the analysis of the non-control
PCR reactions since these were assayed only once in each sample. The N non-control measurements (from all
patient samples) map to NmiR unique microRNAs which are assumed to be normally distributed around their
mean with the same standard deviation (measurement noise) as the control reactions:

µi = βPairi,miR(i) + βbP
k ·XbP

miR(i) + βfI
k ·XfI

miR(i) + βfP
k ·XfP

miR(i) + Ec(IDi), i = 1, . . . , N

βj,k ∼ N(αk, σk), k = 1, . . . , NmiR, j = 1, . . . , Npairs

Similar to the control PCR reactions, indicator variables are used to classify the corresponding urine sample ac-
cording to clinical and laboratory classification. For the non-control reactions, the panel specific factors appear as
offsets that adjust individual measurements for the variable efficiency in the universal amplification step. Since
these factors are not observed, they are treated as missing data which are estimated from the control reactions.
This corresponds to a sequential two stage model for missing data but with full allowance for uncertainty in the
estimation of unknown quantities.

In this analysis, non-informative priors were specified for the model parameters (regression coefficients, standard
deviations of random effects):

αc
k ∼ N(0, 106) αk ∼ N(0, 106)

βc,bP
k ∼ N(0, 106) βbP

k ∼ N(0, 106)

βc,fI
k ∼ N(0, 106) βfI

k ∼ N(0, 106)

βc,fP
k ∼ N(0, 106) βfP

k ∼ N(0, 106)

σID
k ∼ U(0, 100) σk ∼ U(0, 100)

σc
k ∼ U(0, 100)

σB ∼ U(0, 100)

σw ∼ U(0, 20)

The values of the standard deviation of the normal priors for the mean parameters (1000) and the upper limit of
the uniform priors for standard deviations (100 and 20) were motivated by numerical considerations as they yield
essentially non-informative priors in the context of the finite precision arithmetic of digital computations.

1 Although suggested as reference genes (biological controls) by the panel manufacturer the 6 microRNAs/small nuclear RNAs were
not used as such in this analysis. Hence their designation as controls is only used as a means to differentiate the replicated PCR
reactions from the rest of the microRNAs which were only assayed once in each panel.
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Matched samples from patients with overt nephropathy and normals

This analysis is similar to the one carried out for patients with microalbuminuria in that a random effects are used
to account for the matching of patients in pairs. The only difference lies in the fixed effects part of the model, i.e.
the indicator variable (XOv

i = 1 if the sample came from a patient with overt nephropathy and 0 otherwise) and the
corresponding regression coefficient (interpretable as ΔCqqPCR signal for overt nephropathy relative to the normal
state):

µPCR
i,k = αc

k +a P
c
Pairi,k + βc,Ov

k ·XOv
i , k = 1, . . . , NP

µi = βPairi,miR(i) + βOv
k ·XOv

miR(i) + Ec(IDi), i = 1, . . . , N

Non-informative N(0, 106) priors were specifed for the nephropathy effect for both control and non-control PCRs,
as well as for the remaining model parameters similar to the previous sections.

Calculation of ΔΔCq values

Each of the three models allow the estimation of ΔCqvalues for all RNAs of interest assayed in the experiment.
To calculate the ΔΔCqvalues, one forms the difference between the ΔCq for the kth microRNA (given by a “beta”
coefficient in the sample comparison contemplated) and the ΔCqfor UniSP3. Since both ΔCq values are estimated
from the data, these differences are averaged over the posterior distribution of these quantities given the raw Cq
signals. The corresponding integral can be approximated by forming the differences between the corresponding
ΔCq samples from the Markov Chain Monte Carlo simulations. Means and Standard Errors of these ΔΔCqs were
used in the meta-analysis of microRNA targets.

WinBUGS Code
WinBUGS code for the Bayesian estimation of the Cq in three analyses are given in the listings below. In WinBUGS
the normal distribution is parameterized in terms of the precision (inverse of the square of the standard deviation),
necessitating the introduction of auxilliary variables in the code. The cut function was used in the code to ensure
that only data from the control PCR reactions were used to “learn” the values of the panel specific normalization
factors. During Monte Carlo Markov Chain (MCMC) simulation for the estimation of the quantification cycle
(threshold crosing) values of the non-control PCR reactions, this uncertainty was taken fully into account by
marginalizing over the posterior distribution of Ec(IDi) obtained by conditioning on the control data. For all models,
we simulated three chains with overdispersed initial values and explored convergence both by visual inspection and
formal convergence diagnostics (Gelman-Rubin). The first 10000 iterations of the simulations were discarded (burn-
in phase) and subsequently 200000 draws were obtained in WinBUGS. Only one draw in 100 was stored and used
further, eliminating for all practical purposes the autocorrelation between consecutive samples. WinBUGS MCMC
output was then imported in the R programming language for further processing (calculation of means and standard
errors of ΔΔCqs, Credible Interval and pseudocontour probabilities computations, meta-analysis etc.).
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Analysis of Samples from Patients with MicroAlbuminuria

model {
##================================================================================
## Part o f the model r e l a t i n g to con t r o l r e a c t i on and miRs − LME
##================================================================================

fo r ( i in 1 : cntr .N) {
cntr .Y[ i ] ~ dnorm( cntr .mu[ i ] , tau . with in )
cntr .mu[ i ] <− cntr . exp [ cntr . ID [ i ] ] + cntr . b [ cnt r . ID [ i ] , cnt r .R[ i ] ]

}

f o r ( i in 1 :NID) {
## i t e r a t e over the number o f c on t r o l r e a c t i o n s (NR)
## R2miR maps r e a c t i on to con t r o l miR

f o r ( j in 1 :NR) {
cntr . b [ i , j ] ~ dnorm( cntr .PCR[ i , j ] , tauID [R2miR [ j ] ] )
cnt r .PCR[ i , j ] <− cntr . alpha [R2miR [ j ] ] +

cntr . alphaP [ cntr . Pair [ i ] ,R2miR [ j ] ] +
cntr . XStage [ i , 1 ] ∗ cntr . bu [R2miR [ j ] , 1 ] +
cntr . XStage [ i , 2 ] ∗ cntr . bu [R2miR [ j ] , 2 ] +
cntr . XStage [ i , 3 ] ∗ cntr . bu [R2miR [ j ] , 3 ]

}
## tauB i n t e r p r e t a b l e as no i s e due to amp l i f i c a t i o n f a c t o r s
cntr . exp [ i ] ~ dnorm (0 . 0 , tauB )
cut . exp [ i ] <− cut ( cntr . exp [ i ] )

}

f o r ( i in 1 : NPair ) {
f o r ( j in 1 : cntr .NmiR) {

cntr . alphaP [ i , j ] ~ dnorm (0 . 0 , cntr . tau [ j ] )
}

}

f o r ( i in 1 : cntr .NmiR) {
cntr . alpha [ i ] <− alpha [NmiR+i ]
cntr . bu [ i , 1 ] <− cntr . bSP [ i ]
cnt r . bu [ i , 2 ] <− cntr . f u I [ i ]
cnt r . bu [ i , 3 ] <− cntr . fuP [ i ]

cnt r . bSP [ i ] <− BsP [NmiR+i ]
cntr . f u I [ i ] <− FuI [NmiR+i ]
cntr . fuP [ i ] <− FuP [NmiR+i ]

sigmaID [ i ] <− 1/ sq r t ( tauID [ i ] )

tauID [ i ] <− pow( s igID [ i ] ,−2)
s igID [ i ] ~ dun i f ( 0 . 0 , 1 0 0 . 0 )

cntr . tau [ i ] <− pow( cntr . sigma [ i ] ,−2)
cntr . sigma [ i ] ~ dun i f ( 0 . 0 , 1 0 0 . 0 )

}

tauB <− pow( sigmaB ,−2)
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sigmaB ~ duni f ( 0 . 0 , 1 0 0 . 0 )

##================================================================================
## Part o f the model r e l a t i n g to non con t r o l r e a c t i on and miRs
##================================================================================

fo r ( i in 1 :N) {
Y[ i ] ~ dnorm(mu[ i ] , tau . with in )
mu[ i ] <− b [ Pair [ i ] ,miR [ i ] ]+XStage [ ID [ i ] , 1 ] ∗ bAlbu [miR [ i ] , 1 ] +

XStage [ ID [ i ] , 2 ] ∗ bAlbu [miR [ i ] , 2 ] +
XStage [ ID [ i ] , 3 ] ∗ bAlbu [miR [ i ] , 3 ] +

cut . exp [ ID [ i ] ]
}

f o r ( i in 1 : NPair ) {
f o r ( j in 1 :NmiR) {

b [ i , j ]~dnorm( alpha [ j ] , tau [ j ] )
}

}
f o r ( i in 1 :NmiR) {

bAlbu [ i , 1 ] <− BsP [ i ]
bAlbu [ i , 2 ] <− FuI [ i ]
bAlbu [ i , 3 ] <− FuP [ i ]

sigma [ i ] ~ dun i f ( 0 . 0 , 1 0 )
tau [ i ] <− pow( sigma [ i ] ,−2)

}

f o r ( i in 1 :NmiR+cntr .NmiR) {
alpha [ i ] ~ dnorm ( 0 . 0 , 1 . 0E−6)
BsP [ i ] ~ dnorm ( 0 . 0 , 1 . 0E−6)
FuI [ i ] ~ dnorm ( 0 . 0 , 1 . 0E−6)
FuP [ i ] ~ dnorm ( 0 . 0 , 1 . 0E−6)

}

tau . with in <− pow( sigma . within ,−2)
sigma . with in ~ dun i f (0 , 20 )

}
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Overt Nephropathy v.s. Normal

model {
##================================================================================
## Part o f the model r e l a t i n g to con t r o l r e a c t i on and miRs − LME
##================================================================================

fo r ( i in 1 : cntr .N) {
cntr .Y[ i ] ~ dnorm( cntr .mu[ i ] , tau . with in )
cntr .mu[ i ] <− cntr . exp [ cntr . ID [ i ] ] + cntr . b [ cnt r . ID [ i ] , cnt r .R[ i ] ]

}

f o r ( i in 1 :NID) {
## i t e r a t e over the number o f c on t r o l r e a c t i o n s (NR)
## R2miR maps r e a c t i on to con t r o l miR

f o r ( j in 1 :NR) {
cntr . b [ i , j ] ~ dnorm( cntr .PCR[ i , j ] , tauID [R2miR [ j ] ] )
cnt r .PCR[ i , j ] <− cntr . alpha [R2miR [ j ] ] +

cntr . alphaP [ cntr . Pair [ i ] ,R2miR [ j ] ] +
cntr . XStage [ i ]∗ cntr . bu [R2miR [ j ] , 1 ]

}
## tauB i n t e r p r e t a b l e as no i s e due to amp l i f i c a t i o n f a c t o r s
cntr . exp [ i ] ~ dnorm (0 . 0 , tauB )
cut . exp [ i ] <− cut ( cntr . exp [ i ] )

}

f o r ( i in 1 : NPair ) {
f o r ( j in 1 : cntr .NmiR) {

cntr . alphaP [ i , j ] ~ dnorm (0 . 0 , cntr . tau [ j ] )
}

}

f o r ( i in 1 : cntr .NmiR) {
cntr . alpha [ i ] <− alpha [NmiR+i ]
cntr . bu [ i , 1 ] <− cntr . bS3 [ i ]

cnt r . bS3 [ i ] <− Bt3 [NmiR+i ]

sigmaID [ i ] <− 1/ sq r t ( tauID [ i ] )

tauID [ i ] <− pow( s igID [ i ] ,−2)
s igID [ i ] ~ dun i f ( 0 . 0 , 1 0 0 . 0 )

cntr . tau [ i ] <− pow( cntr . sigma [ i ] ,−2)
cntr . sigma [ i ] ~ dun i f ( 0 . 0 , 1 0 0 . 0 )

}

tauB <− pow( sigmaB ,−2)
sigmaB ~ duni f ( 0 . 0 , 1 0 0 . 0 )

##================================================================================
## Part o f the model r e l a t i n g to non con t r o l r e a c t i on and miRs
##================================================================================
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f o r ( i in 1 :N) {
Y[ i ] ~ dnorm(mu[ i ] , tau . with in )
mu[ i ] <− b [ Pair [ i ] ,miR [ i ] ]+XStage [ ID [ i ] ] ∗ bAlbu [miR [ i ] , 1 ] +

cut . exp [ ID [ i ] ]
}

f o r ( i in 1 : NPair ) {
f o r ( j in 1 :NmiR) {

b [ i , j ]~dnorm( alpha [ j ] , tau [ j ] )
}

}
f o r ( i in 1 :NmiR) {

bAlbu [ i , 1 ] <− Bt3 [ i ]

sigma [ i ] ~ dun i f ( 0 . 0 , 1 0 )
tau [ i ] <− pow( sigma [ i ] ,−2)

}

f o r ( i in 1 :NmiR+cntr .NmiR) {
alpha [ i ] ~ dnorm ( 0 . 0 , 1 . 0E−6)
Bt3 [ i ] ~ dnorm ( 0 . 0 , 1 . 0E−6)

}
}

tau . with in <− pow( sigma . within ,−2)
sigma . with in ~ dun i f (0 , 20 )

}


