Supplemental Information, Text S1

Luni C, Marth JD, Doyle III FJ. Computational Modeling of Glucose Transport in Pancreatic β -cells Identifies Metabolic Thresholds and Therapeutic Targets in Diabetes. *PLOS One*.

First steps in GSIS. The system of equations for glucose transport and phosphorylation in a β -cell is given by the following expressions, with nomenclature and parameters as indicated below:

 $d[Gluc]_{i.c.}/dt = v_{G1} + v_{G2} - v_{-G1} - v_{-G2} - v_{GK},$

where:

$$v_{G1} = \frac{V_{\max,1}[Gluc]_{e.c.}}{K_{D,1} + [Gluc]_{e.c.}}$$

$$v_{G2} = \frac{V_{\max,2}[Gluc]_{e.c.}}{K_{D,2} + [Gluc]_{e.c.}}$$

$$v_{-G1} = \frac{V_{\max,1}[Gluc]_{i.c.}}{K_{D,1} + [Gluc]_{i.c.}}$$

$$v_{-G2} = \frac{V_{\max,2}[Gluc]_{i.c.}}{K_{D,2} + [Gluc]_{i.c.}}$$

$$v_{GK} = \frac{V_{\max,GK}[Gluc]_{i.c.}}{K_{H}^{n_{H}} + [Gluc]_{i.c.}}$$

$$\begin{split} V_{\max,1} &= V_{\max,1 healthy} \cdot \mathcal{E}_1 \\ V_{\max,2} &= V_{\max,2 healthy} \cdot \mathcal{E}_2 \end{split}$$

$$\varepsilon_{1} = \frac{[mGlut1]}{[mGlut1]_{healthy}}$$
$$\varepsilon_{2} = \frac{[mGlut2]}{[mGlut2]_{healthy}}$$

GLUT-1 and GLUT-2 are present at the cell membrane in three forms (as specified in the model described in Text S2): basic, glycosylated, and glycosylated within a lectin-bound complex. We assumed that glycosylation does not affect glucose transport kinetics, but only the residence time at the membrane of the glucose transporters.

Nomenclature.

 v_{G1} = rate of extra-cellular glucose entrance into the β -cell through GLUT-1, (mM/min)

 v_{G2} = rate of extra-cellular glucose entrance into the β -cell through GLUT-2, (mM/min) v_{-G1} = rate of intra-cellular glucose exit out of the β -cell through GLUT-1, (mM/min) v_{-G2} = rate of intra-cellular glucose exit out of the β -cell through GLUT-2, (mM/min) v_{GK} = rate of intra-cellular glucose phosphorylation by GK, (mM/min) [*Gluc*]_{*i.c.*} = intracellular glucose concentration, (mM) [*Gluc*]_{*e.c.*} = extra-cellular glucose concentration, (mM) [*mGlut*1] = steady-state membrane GLUT-1 concentration [*mGlut*2] = steady-state membrane GLUT-2 concentration k_{ealthy} = for β -cell in normal healthy conditions ε_1 = fraction of [*mGlut*1] respect to normal ε_2 = fraction of [*mGlut*2] respect to normal

Parameters.

Parameter	Value	Unit	Reference
$V_{\max,1healthy}$	$1059.54 \cdot 10^{-3}$	mM/min [*]	**
<i>K</i> _{<i>D</i>,1}	3	mM	Uldry et al. (2002)
$V_{\max,2healthy}$	3910.51·10 ⁻³	mM/min [*]	**
<i>K</i> _{<i>D</i>,2}	17	mM	Uldry et al. (2002)
V _{max,GK}	$420.17 \cdot 10^{-3}$	mM/min [*]	**
K _H	8	mM	Davis et al. (1999)
n _H	1.7		Matschinsky (1996)
ε_1 , T2D β -cell	0.14		Ohtsubo et al. (2011)
ε_2 , T2D β -cell	0.05		Ohtsubo et al. (2011)

* Assuming the volume of intracellular space is equal to $4.2 \, pl/cell$.

** Least-squares fitting of data in Figure 3i in Ohtsubo et al. (2011).