
SUPPLEMENTAL MATERIAL ON METHODS

The observed data are represented as X ∈ Rp×n, where each column corresponds to one of n
samples, quantifying the associated gene-expression values for all p genes under investigation. A
factor model [1]–[4] is employed. Specifically, the data are assumed to satisfy

X = AS+ E (1)

where A ∈ Rp×r, S ∈ Rr×n and E ∈ Rp×n. We assume that the gene-expression data are centered
in advance of the analysis; otherwise, there should be an intercept added to the model. Considering
the jth sample, xj , corresponding to the jth column of X, the model states that xj = Asj + ej ,
where sj and ej are the jth columns of S and E, respectively.

The columns of A represent the factor “loadings”, and rows of S are often called factors. To
address the fact that n� p, we impose a sparseness constraint on the columns of A [4], with the
idea that each column of A should ideally correspond to a biological “pathway”, which should be
defined by a relatively small number of correlated genes. Within Bayesian formalisms, the sparse
columns of A are imposed via spike-slab-like priors [4], [5], as discussed further below.

For the factor model in (1), r defines the number of factors responsible for the data X, and it is
not known in general, and must be inferred. Within the analysis we consider K potential factors
(K columns of A), with K set to a value anticipated to be large relative to r. We then infer the
number of columns of A needed to represent the observed data X, with this number used as an
estimate of r. Since we will be performing a Bayesian analysis, we will infer a posterior density
function on r. Henceforth we assume A has K columns, with the understanding that we wish to
infer the r < K columns that are actually needed to represent the data.

Let ak represent the kth column of A, for k = 1, . . . , K, and ej and sj represent respectively
the jth columns of E and S (with j = 1, . . . , n). Within the imposed prior, vectors ej and sj are
generated as sj ∼ N (0, IK), and ej ∼ N (0, diag(ψ−1

1 , . . . , ψ−1
p )); IK is the K ×K identity matrix

and the precisions (ψ1, . . . , ψp) are all drawn i.i.d. from a gamma prior. To define sparseness on
the ak [4] we employ a spike-slab prior:

Alk ∼ wlkδ0 + (1− wlk)N (0, α−1
k ) , wlk ∼ Beta(a, b) , αk ∼ Gamma(c, d) (2)

where (a, b) are selected as to strongly favor wlk → 1, δ0 is a distribution concentrated at zero, and
l = 1, . . . , p.

The Beta Process (BP) is used to infer the number of needed factors r [6]–[9]. Specifically, for
each of the K potential factors, there is an associated probability πk, for k = 1, . . . , K, and a
particular data sample utilizes the kth factor with probability πk, and doesn’t use it with probability
1− πk (i.e., Bernoulli). Within the model each of the πk are drawn

πk ∼ Beta(α/K, β(K − 1)/K) (3)

Note that for finite settings of the parameters α and β, this is a degenerate beta distribution [6],
which strongly favors πk → 0. Therefore, what this model is imposing is that as the number of
potential factors K becomes large, only a small subset of the {πk}k=1,K are likely to be large,
and therefore only a small subset of factors are utilized to represent the data. The model therefore
encourages a parsimonious use of factors for representation of the data; more details may be found
in [6]–[9].
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The computations are performed using Gibbs sampling, for which all needed conditional density
functions are analytic. The results presented here correspond to using 5000 collection samples, after
a burn-in of 2000 iterations. However, with 2000 burn-in iterations and 500 collection samples, the
average results of the factor scores and factor loadings are almost identical to those found with
5000.
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