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1 Cell-to-cell transmission strategies

Definition of strategies. Let us assume that infected cells have a given prob-
ability distribution to pass on a number of viruses, given by qi, with

∑N

i=0 qi = 1.
The probability distribution, {qi}, defines a strategy for cell-to-cell transmission.

Suppose that each virus has a probability to establish a successful infection,
r, or fail with probability 1 − r. The probability to produce i viruses which
successfully infect another cell is then

γj =

N
∑

i=j

qi

(

i

j

)

rj(1− r)i−j .

The mean number of viruses passed by the cell is

k =

N
∑

i=1

qii. (1)

The mean number of successful viruses produced by the cell is

V =

N
∑

i=1

N
∑

j=i

qj

(

j

i

)

ri(1− r)j−ii =

N
∑

j=0

qj

j
∑

i=0

(

j

i

)

ri(1− r)j−ii =

N
∑

j=0

qjjr = Qr,

where we interchanged the order of summation and then used the formula for
the mean of the binomial distribution. The probability of successful infection is

β = 1− γ0 = 1−

N
∑

j=0

qj(1− r)j . (2)

Strategies with a fixed transmission number. For simplicity we will con-
sider the probability distributions of the form,

q0 = 1− q, qs = q, qk = 0 k 6= 0, k 6= s.

In other words, a cell either passes s viruses or 0 viruses. For such a cell, we
have

γj = q

(

s

j

)

rj(1− r)s−j , 0 ≤ j ≤ s, γj = 0, j > s. (3)
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Further,
k = qs, V = qsr, β = (1− (1− r)s)q.

For each strategy,

q =
k

s
,

and therefore

R0 =
λβ

ad
=

λk

ad

1− (1− r)s

s
. (4)

General cell-to-cell transmission strategies. A general strategy is defined
by the vector (q1, . . . qN ) of probabilities to transmit a number of viruses. We
will assume that all the strategies have an invariant, k, which is the mean
number of viruses passed, see equation (1).

Consider the quantity β for a general strategy, equation (2). β is a growing
function of r, with

β|r=0 = 0, β|r=1 = 1− q0.

The last equality is obtained by taking the limit as r → 1 of expression (2). Let
us construct the quantityW , the expected number of viruses passed, conditioned
on a successful transmission. We have

W =

∑N

m=1 qmm
∑N

m=1 qm
=

k

1− q0
.

We can see that

β|r=1 =
k

W
.

In other words, the maximum probability of successful infection is inversely
proportional to the conditional average of viruses transmitted. In the simple
one-parametric family of strategies considered before, we have W = s.

Let us first consider the limit where r is very small. In this case we can
expand the probability

β ≈ kr +
r2

2
(k − 〈s2〉),

where 〈s2〉 =
∑N

m=0 qmm2. We can see that the higher the quantity 〈s2〉 for the
strategy, the lower the rate of synapse formation, and thus the less efficient the
strategy is. Since the value 〈s〉 ≡ k is fixed, the value 〈s2〉 can be expressed in
terms of the variance of the distribution,

〈s2〉 = V ar + k2.

That is, we obtain the result that strategies with higher variances of virus trans-
fer numbers will be less efficient.

Next we turn to the limit of large infection probabilities. We know that for
one-parametric strategies, higher values of s correspond to lower efficiency. An
interesting question is how this dependency is altered by changing the variance
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of the distribution. To investigate this, we consider a specific distribution which
is a two-parametric family:

q0 = 1− k/s, qs+i =
k

s(2n+ 1)
, −n ≤ i ≤ n,

with all the other entries being zero. Here the parameter s defines the con-
ditional mean of the distribution, and the parameter n the “width” of this
distribution. We have W = s for this distribution, and the variance is given by

k(s− k + n(n+1)
3s ). The rate of successful infection in this case is given by

β =
k

s

(

1−
(1− r)s−n(1− (1− r)2n+1)

r(2n+ 1)

)

.

It can be shown that as before, β is a growing function of r and a decreasing
function of s. Further, β decreases with n, which means that for a given s,
strategies with wider distributions are less effective.

2 Limited rate of synapse formation

Suppose that in general, the rate of synapse production is given by Qf(s), where
Q is a constant and the function f(s) satisfies the following properties:

• df/ds < 0,

• f(s) ≤ 1/s,

• lims→∞ f(s)s = 1.

Then we have k = Qf(s)s. It follows that unless f(s) = 1/s, k is now an
increasing function of s. A particular form of this function that we consider in
detail is given by

f(s) =
1

s+ z
,

where the constant z measures to what extent synapse formation is a rate-
limiting step. In this case we have

R0 =
λk

ad

(1− (1− r)s)

s+ z
.

2.1 Interaction between free-virus transmission and the

synaptic transmission

In the model presented above, for low values of s some viruses do not get a chance
to be transferred by cell-cell transmission. It is possible that such viruses are
“wasted”. On the other hand, we can also assume that these viruses get trans-
ferred by the free-virus mechanism instead. Here we will explore this interaction
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between the free-virus and cell-cell transmission pathways, where at low s the
free-virus pathway takes over.

The rate of virus production in the context of cell-cell transmission is given
by k = σs. The rate of virus production in terms of free-virus infection is given
by kfree, as it appears in system (1) of the main text. The total rate of virus
production is given by

ktot = k + kfree = Qf(s)s+ kfree,

and we assume that this rate is independent of s. This implies that the rate of
free virus production is now s-dependent: kfree = ktot −Qf(s)s.

We would like to compare the values of R0 for different strategies. Since
R0 = βλ

ad
, it is enough to compare the β-values. We have

βsyn = σ(1− (1− r)s), βfree = kfree
β̃

u
= rfree(ktot −Qf(s)s),

where we introduced a short-hand notation, rfree = β̃/u. We would like to
examine the quantity

β = βsyn + βfree = Qf(s)(1− (1− r)s) + rfree(ktot −Qf(s)s)

as a function of s for different values of other parameters. We can rewrite the
above expression as

β = QF (s) + ktotrfree, (5)

where
F (s) = (1− (1− r)s − rfrees)f(s).

We need to determine what strategy, s, maximizes the function F (s) (and there-
fore the function β, and the basic reproductive ratio, R0). We can write

dF

ds
= −f ′[−(1− rfree(s+ f/f ′)) + (1− r)s(1 + ln(1− r)f/f ′)] = 0, (6)

assuming that f ′(s) 6= 0. Solving this equation for s is equivalent to finding the
intersections of two functions,

F1(s) = eas(1− rfree(s+ f/f ′)), F2(s) = 1− af/f ′,

where we defined a = − ln(1 − r) ≥ 0. It is clear that the function F1 grows
exponentially as s → ∞, while the function F2(s) grows linearly with s. There-
fore, if we can show that for some value s = j, F1(j) < F2(j), then we are
guaranteed to have at least one root of equation (6) with s > j.

Let us impose an additional condition on the function f(s). Suppose that
the inequality

f(j) > −f ′(j)j (7)

holds for some values of 1 ≤ j ≤ j1. Then as long as

rfree < rfreec (r) ≡
e−aj(af(j) + (eaj − 1)f ′(j))

f(j) + jf ′(j)
, (8)
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then equation (6) has a root for some value of s > j. For inequality (8) to be
meaningful, its right hand side has to be possible, which is guaranteed as long
as

af(j) > (eaj − 1)|f ′(j)|,

which imposes a condition on r. Note that under condition (7), inequality (8)
always holds for low values of r, which can be seen by expanding inequality (8)
in the Taylor series in terms of the small r.

To conclude, we have analyzed the possibility that synapse formation is a
rate-limiting step, such that for low values of s, synapses cannot be formed fast
enough to transfer the same total number of viruses as that in the case of high
s. In this case, additional viruses are transferred via the free-virus transmission
pathway. This phenomenon is captured by the function f(s), which quantifies
exactly the extent to which the number of viruses transferred by the cell-cell
pathway is reduced for low values of s. We ask the question, in the framework
of these assumptions, what is the most effective cell-cell strategy, s?

Our analysis shows that for a fairly general form of the function f(s), an in-
termediate maximum of the function β(s) is possible for small values of r, unless
the relative efficiency of the free virus transmission is larger than a threshold
(condition (8)). The function β(s) includes contributions from both the synap-
tic transmission and the free virus transmission. If the free-virus transmission
is characterized by relatively small losses, u, (or relative high probabilities of
individual virus infection, β̃), then the most efficient cell-cell strategy corre-
sponds to s = 1. In this case, relatively more viruses will be transferred via the
free-virus pathway, which is more efficient than the cell-cell pathway. On the
other hand, if the free-virus pathways is less efficient (condition (8) for rfree),
then the best strategy corresponds to intermediate values of s. For high values
of r, the s = 1 strategy may be the most advantageous again, because in this
case, higher-s strategies are too ”wasteful”, and are strongly disadvantageous.

2.2 A specific case

Let us next assume that

f(s) =
1

s+ z
,

where the value z measures the extent to which synapse formation is a rate-
limiting step. In particular, z = 0 corresponds to the simpler model considered
above.

In this case, the function F (s) in equation (5) is given by

F (s) =
1− (1− r)s − rfrees

s+ z
,

and the equation dF/ds = 0 is equivalent to the equation F1 = F2, with

F1(s) = eas(1 + rfreez), F2(s) = 1 + a(sz).
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Figure 1: The contour-plot of the total infectivity β as a function of s and r.
The lighter shade corresponds to higher values of β. The thick black line shows
the location of the maxima of β, and the white line corresponds to the equation
βsyn = βfree; in this plot, below the while line we have βfree >> βsyn, and the
inequality is reversed above the while line. The parameters are: rfree = 10−3,
z = 40, Q = 0.5, ktot = 1.

For this particular choice of the function f(s) the analysis is very simple, as
F1(s) is an exponential function and F2(s) is a linear function. We observe that
if z = 0, the two functions F1(s) and F2(s) intersect once at s = 0, which means
that for all s ≥ 1, dF/ds < 0, and the most effective strategy is s = 1. For
z > 0, the function F (s) may have an intermediate maximum. This happens
for a value of s with s > j if

rfree < rfreec (j) =
e−aj

z
(1− eaj + a(j + z)). (9)

Here by rfreec (j) we denote the threshold value of rfree such that below this
value, one may have an intermediate maximum with s > j, that is, a strategy
with with s > j is the most effective one. In figure 1 we show the contour-plot
of the infectivity β = βfree + βsyn as a function of the synaptic strategy s and
probability of infection r, for a fixed value of rfree = 10−3 (for other parameter
values, see figure caption). The thick black line shows the maximum value of β,
and the white line corresponds to the equation βsyn = βfree. We can see that
for larger values of r, the maximum of β corresponds to intermediate values of
s. For lower values of r, the strategy s = 1 is the most efficient one. For this
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Figure 2: The threshold values of rfree, rfreec (j), plotted as functions of r for
several values of j. If rfree < rfreec (j), this means that the most efficient cell-cell
strategy corresponds to a value of s larger than j. Parameters are as in figure
1.

choice of function f(s) = 1/(s+ z), equation (8) is given by equation (9), which
for j = 0 becomes

rfreec (0) = a = − log(1− r) ≈ r.

In other words, for rfree < r, the most efficient strategy corresponds to s = 1.
This is what we observe in figure 1.

Figure 2 plots of the threshold values of qc(j) as functions of r. We can see
that rfreec (j) decay with j, that is, having a higher value for the most efficient
strategy requires the free-virus strategy to be less efficient. Also, we can see
that for high values of r, rfreec (j) corresponding to j > 1 attain negative values,
which means that in that region, the strategy s = 1 is the most efficient one,
see figure 1.

3 Multiplicity-dependent strategies

Suppose that the probability distribution, q
(m)
i , depends on the index m, the

number of viruses in the transmitting cell, by assuming that the total number
of viruses transferred is a function of the cell’s multiplicity of infection: k(m).
We assume that k(m) is a non-decreasing function of m. Let us consider the
simplest choice of strategies, such as

q
(m)
i =







1− k(m)/s, i = 0,
k(m)/s, i = s,
0, otherwise.
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3.1 The bifurcation analysis

We investigate the bifurcation of the no-infection solution of system (1) of the
main text,

x0 =
λ

d
, xi = 0, 1 ≤ i ≤ N. (10)

Let us consider r to be the control parameter. As the infectivity grows, infection
gets established. We want to find the value r = rc for which solution (10) loses
stability. This corresponds to an eigenvalue of the Jacobian, J , evaluated at
solution (10) having a zero real part. Let us denote by I the unit matrix of size
N ×N . We have

J = −aI +



























a− d −λ
d

∑N

k=1 γ
(1)
k −λ

d

∑N

k=1 γ
(2)
k . . . −λ

d

∑(N)
k=1 γ

(N)
k

0 λ
d
γ
(1)
1

λ
d
γ
(2)
1 . . . λ

d
γ
(N)
1

0 λ
d
γ
(1)
2

λ
d
γ
(2)
2 . . . λ

d
γ
(N)
2

. . .

0 λ
d
γ
(1)
s

λ
d
γ
(2)
s . . . λ

d
γ
(N)
s

0 . . . 0
. . .
0 . . . 0



























(11)
The first eigenvalue of this matrix is equal to d 6= 0. We also have the eigenvalue
a of multiplicity N − s. To find the rest of the eigenvalues, consider the s × s
matrix J̃ = {mij}, whose entries are given by

mij =
λ

d
γ
(j)
i =

λ

d
ri(1− r)s−i k(j)s!

si!(s− i)!
≡ µiνj .

The remaining eigenvalues of the matrix J are related to eigenvalues of the
matrix J̃ by Λ− a, where Λ is an eigenvalue of J̃ . Matrix J̃ has the eigenvalue
0 with multiplicity s− 1, which corresponds another s− 1 eigenvalues of size a
for matrix J . Finally, we have Λ =

∑s

i=1 µiνi. Therefore, the expression for the
last eigenvalue of J is

λ

d

s
∑

i=1

ri(1− r)s−i k(i)s!

si!(s− i)!
− a.

Equating this expression to zero we obtain the equation for the bifurcation
threshold parameter, or the basic reproductive number of this system,

R0 =
λ

ad

s
∑

i=1

ri(1− r)s−i k(i)s!

si!(s− i)!
. (12)

The virus-free equilibrium is unstable if R0 > 1. The equation R0 = 1 gives us
the threshold value rc, such that for r > rc solution (10) loses stability.
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If k(m) = k, we obtain

R0 =
λk

ad

s
∑

i=1

ri(1− r)s−i

s

s!

i!(s− i)!
=

λk

ad

1− (1− r)s

s
, (13)

see expression (4). This is a growing function of r which is equal to r for s = 1,
and is a saturating function for s > 1, with the value of 1/s at r = 1. As s
grows, this function decreases. Therefore, if k(s) = 1, the intersection of this
function with the constant function 1 shifts to the right. This means that for
constant k(m), rc is a growing function of s. It is harder for larger s to establish
a successful infection.

This trend can potentially be reversed if k(m) grows with m. Consider the
class of functions k(m),

k(m) = k

(

1 +
g(m− 1)(1 + η)

m− 1 + η

)

. (14)

The parameter g tells us how quickly the rate of virus transmission increases
with the multiplicity of infection of the cell, m, and parameter η is responsible
for the saturation of this function for high values of m. The simplest case when
η → ∞ corresponds to the absence of saturation,

k(m) = k(1 + g(m− 1)). (15)

The value g = 0 corresponds to the model of constant k. The regime with g < 1
corresponds to subadditive effect of coinfection. This is because for g < 1, we
have k(m1+m2) < k(m1) + k(m2). This inequality is reversed if we have g > 1,
which corresponds to superadditive, or cooperative, behavior of coinfection. The
special case g = 1 describes an additive effect of coinfection. We can calculate
the parameter R0 in the case where the rate of virus transmission size is given
by formula (15):

R0 =
λk

ad

(

gr +
(1− g)(1− (1− r)s)

s

)

.

We can see that g = 0 corresponds to the constant-k formula, (13). The case
g = 1 gives R0 = λkr/(ad), that is, the basic reproductive ratio is independent
of the strategy, s, and is proportional to the probability of viruses to infect a
cell. For any 0 ≤ g < 1, the function R0 is a decaying function of s, because the

function 1−(1−r)s

s
is a decaying function of s. Finally, for all g > 1, R0 grows

with s, and saturates at a constant level, lims→∞ R0 = gr. In other words,
starting from a certain values of s, all high-s strategies are more or less equally
effective.
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