Table S1: χ^{2} test to check if $\mathbf{P}(\mathbf{r} \mid \theta)$ is independent of θ. The distributions for five different θ were compared using a χ^{2} test. The table indicates the χ^{2} statistic values. For all comparisons, $d f=30$, $p<0.0001$. Each column and row represents a turn angle as indicated.

	$\theta=\mathbf{0}^{\mathbf{o}}$	$\theta=\mathbf{3 0}^{\mathbf{o}}$	$\theta=\mathbf{6 0}^{\mathbf{o}}$	$\theta=\mathbf{1 2 0}^{\mathbf{o}}$	$\theta=\mathbf{1 8 0}^{\mathbf{o}}$
$\theta=\mathbf{0}^{\mathbf{o}}$		$0.1481 \mathrm{e}+008$	$0.3877 \mathrm{e}+008$	$0.5216 \mathrm{e}+008$	$0.6137 \mathrm{e}+008$
$\theta=\mathbf{3 0}^{\mathbf{o}}$	$0.2195 \mathrm{e}+008$		$0.0879 \mathrm{e}+008$	$0.1800 \mathrm{e}+008$	$0.2509 \mathrm{e}+008$
$\theta=\mathbf{6 0}^{\mathbf{o}}$	$0.8170 \mathrm{e}+008$	$0.1250 \mathrm{e}+008$		$0.0275 \mathrm{e}+008$	$0.0664 \mathrm{e}+008$
$\theta=\mathbf{1 2 0}^{\mathbf{o}}$	$1.3410 \mathrm{e}+008$	$0.3133 \mathrm{e}+008$	$0.0323 \mathrm{e}+008$		$0.0114 \mathrm{e}+008$
$\theta=\mathbf{1 8 0}^{\mathbf{o}}$	$1.3958 \mathrm{e}+008$	$0.3970 \mathrm{e}+008$	$0.0753 \mathrm{e}+008$	$0.0105 \mathrm{e}+008$	

