
Bio-Logic Builder: Supplementary Information 1

Bio-Logic Builder: Supplementary Information

Tomáš Helikar1,∗, Bryan Kowal2, Alex Madrahimov1,3, Manish Shrestha1, Jay Pedersen2, Kahani

Limbu2, Ishwor Thapa2, Thaine Rowley1,3, Rahul Satalkar2, Naomi Kochi3, John Konvalina1, Jim A.

Rogers1,4

1 Department of Mathematics, University of Nebraska at Omaha, Omaha, NE, USA

2 College of Information Science and Technology, University of Nebraska at Omaha,

Omaha, NE, USA

3 Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA

4 Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical

Center, Omaha, NE, USA

∗ E-mail: thelikar@unomaha.edu

Creating a Boolean State Function with Bio-Logic Builder

The Bio-Logic Builder web application is used to define the Boolean state function associated with

a biological entity for use in a Boolean Network. It allows the user to define positive and negative

regulation modules which describe the function of the biological entity using Boolean logic. Regulation

modules with arbitrarily complex Boolean logic may be defined.

This document presents a detailed analysis of the Bio-Logic Builder algorithm. It shows the algorithm

to be scalable, predictable, and correct. Scalable refers to the ability to model any boolean function,

regardless of the number of boolean variables involved. Correctness refers to the behavior of the generated

Boolean function matching the behavior descriptions given to users of the application.

Some basic background in Boolean logic is assumed, such as understanding the concepts of Truth

Tables, the Boolean functions AND, OR and NOT , and DeMorgan’s laws for distributing the NOT

operator. The typical Boolean Algebra convention of using the operators + and ∗ to represent the OR

and AND operators 1, and 0 and 1 to represent TRUE and FALSE is used. The reader interested in

additional technical detail regarding Boolean logic may examine the Reference section [1–4].

1Thus, a sum of Boolean terms applies the OR operator to those terms, and a product of Boolean terms applies the
AND operator to them.



Bio-Logic Builder: Supplementary Information 2

Variables and Expressions used by the Algorithm

This section defines the variables and expressions used by the Bio-Logic Builder application. They fully
define the output Boolean state function of the application. In fact, the RESULT expression is the result
of the application.

• n – the number of species in the species palette

• x1 to xn – Boolean variables representing the activation state of the n species

• p, q – the count of positive regulators and negative regulators, respectively

• pri, nrj – the ith positive regulator and j th negative regulator, respectively, where i is from 1 to p
and j is from 1 to q. Each regulator is a species from the species palette and is in fact xk, for some
k from 1 to n.

• PRCi, NRCj – the Boolean expression for the conditions and subconditions applied to the ith
positive regulator and j th negative regulator, respectively. Each defaults to TRUE if no conditions
are specified.

• PRi = (pri AND PRCi) – the Boolean expression for the ith positive regulator including its
conditions and subconditions

• NRj = (nrj AND NRCj) – the Boolean expression for the j th negative regulator including its
conditions and subconditions

• PRoverridei is the set of indexes of negative regulators which override PRi. For example, PRoverride2 =
{1, 3} indicates that the negative regulators expressions NR1 and NR3 will be applied to PR2.

• PROi =

{
TRUE, PRoverridei = {}∏

j∈PRoverridei
¬NRj , otherwise

• ABSENT =

{
FALSE, user answered “OFF” as the activitity level when ALL regulators are OFF∏n

i=1 xi, user answered “ON”

• POSNEG REGULATORS =

{
FALSE, p= 0∑p

i=1 PRi AND PROi, otherwise

• POS REGULATORS =

{
FALSE, p= 0∑p

i=1 PRi, otherwise

• RESULT = POSNEG REGULATORS OR ABSENT

The ABSENT expression is also called the ABSENT regulator.



Bio-Logic Builder: Supplementary Information 3

Scalability of the Algorithm

This section describes how to generate any possible Boolean function of n-inputs using Bio-Logic Builder.

Definitions from the Variables and Expressions section are used.

A Disjunctive Normal Form (DNF) of a Boolean function is a summation of distinct complete products.

A complete product is a product of all the Boolean variable arguments of a Boolean function, where each

variable is specified exactly once in either complemented (negated) or uncomplemented form. It can be

easily shown that there is a DNF representation of any Boolean function f 6= 0.

At most one term in the DNF representation of a Boolean function can have all inputs negated, as that

is a distinct complete product. The ABSENT regulator controls whether this term is in the generated

Boolean function.

The Boolean function created by the Bio-Logic Builder is exactly the RESULT expression, which is

POSNEG REGULATORS OR ABSENT .

If negative regulators are not specified, then POSNEG REGULATORS simplifies to POS REGULATORS,

and the generated Boolean function generated is POS REGULATORS OR ABSENT .

Procedure for implementing an arbitrary Boolean function

This procedure is written from the perspective of a user of Bio-Logic Builder. It is not used by Bio-Logic

builder itself. Given an arbitrary Boolean function, we may craft inputs to Bio-Logic builder which will

cause it to create that function as its output.

Let BF be an arbitrary Boolean function.

Only positive regulators and the ABSENT regulator will be used in this procedure. This results in

the Boolean function POS REGULATORS OR ABSENT being generated.

Use the following steps to determine how to define the positive regulators and the ABSENT regulator.

This will result in the generation of a Boolean function equivalent to BF .

Since there are no negative regulators, the positive regulators will be the n species in the species



Bio-Logic Builder: Supplementary Information 4

palette, which we may label x1 to xn.

For the trivial case of BF = 0, create a single positive regulator x1 with the condition “IF/WHEN x1

IS OFF”. Set the ABSENT regulator to OFF and enter no other regulators. This generates the Boolean

function x1x1 OR FALSE, which evaluates to FALSE and matches BF = 0.

The rest of the procedure deals with the non-trivial case of BF 6= 0.

Let BE be a DNF form Boolean expression for BF . BE exists as BF 6= 0. Thus, BE is a non-empty

summation of complete product terms.

Let ALLINPUTSOFF =
∏n

i=1 xi. This is the “all inputs negated” term that is controlled by the

ABSENT regulator.

For the special case of BF = ALLINPUTSOFF , set the ABSENT regulator to ON and define

a single positive regulator x1 with the condition “IF/WHEN x1 IS OFF”. This generates the Boolean

function x1x1 OR ALLINPUTSOFF which simplifies to ALLINPUTSOFF .

We now consider all other cases, where BF 6= 0 and BF 6= ALLINPUTSOFF .

Let S be the set of complete products in BE, excluding the possible ALLINPUTSOFF term. S

is non-empty as BE 6= ALLINPUTSOFF and BE 6= 0 and thus must contain at least one complete

product other than ALLINPUTSOFF .

Every term in S must have at least one non-negated input, as the only term which every input is

negated is the ALLINPUTSOFF term.

We may partition these terms into n partitions based on the lowest-index value of the non-negated

variables in each term. The first partition will contains terms with x1 (non-negated). The second partition

contains terms with x1x2 (as x2 is the lowest-indexed non-negated input in any such term). The third

partition contains terms with x1x2x3, and so on. The final partition is the nth partition and contains

the term (
∏n−1

i=1 xi)xn, if it exists in S.

Since all terms have at least one non-negated input variable, this partitioning includes all terms in S.

There are n partitions, and at least one is non-empty. This construction allows us to associate the ith



Bio-Logic Builder: Supplementary Information 5

partition with variable xi, which is the lowest-indexed non-negated variable of each term in the partition.

For each non-empty partition i, perform the following in Bio-Logic Builder:

Create positive regulator xi.

Create conditions and subconditions for regulator xi which causes its Boolean Expression to equal to

the sum of the complete product terms in the partition. This can be done as follows:

• Create one condition for each term, specifying that the conditions are independent.

• For each condition:

– Specify the non-negated variables in the term as co-operative and use the “WHEN x IS ON”
clause. Note that this will always contain the variable xi.

– If there are negated variables in the term, create a subcondition which contains them and
specifies that they are co-operative and use the “WHEN x IS OFF” clause.

Due to the definition of PRi, xi will be ANDed with the sum of these complete product terms. This

distributes xi to each of those terms (by Boolean Algebra definitions). Because each term contains xi

and the fact that (xi AND xi) = xi, the resulting PRi will have the value of the sum of the complete

product terms in the partition.

Since this will be done for each non-empty partition, every complete product term in S will be

accounted for and summed and the result of the POS REGULATORS definition will be the sum of all

complete product terms in S.

Note that we have already defined the ABSENT regulator to be either ALLTERMSOFF or FALSE

(if the “all inputs negated” term is not present in BF ). This accounts for the only possible complete-

product term in BF that was not in S.

Therefore the generated Boolean function will be the sum of all complete products in BF . This

is exactly the definition of DNF Boolean form for BF . Thus, Bio-Logic Builder will create a Boolean

function equivalent to BF .

This completes the procedure definition.

Note that the procedure involves only a linear sequence of steps; there are no recursive steps involved.



Bio-Logic Builder: Supplementary Information 6

Regardless of the number of variables in the Boolean function, the procedure only needs conditions

and subconditions to define it. The conditions are used to define the non-negated variables in each term

of each defined partition. The subconditions are used to define the negated variables in each term of

each partition. Thus, there is no limitation on n, based on the fact that there are only conditions and

subconditions in the model.

Conclusion

Bio-Logic Builder is capable of creating any arbitrary Boolean function definition, regardless of its com-

plexity. One way this can be done is by defining the ABSENT and positive regulators as described by

the procedure above, and skipping all other regulator definitions.



Bio-Logic Builder: Supplementary Information 7

Predictability, Uniqueness and Correctness of the results of the

Algorithm

Uniqueness of the Result

Every unique input to the algorithm results in a predictable, but not globally unique result. That is,

multiple inputs to the algorithm can result in the same output being generated.

For example, it can be shown that there are at least two different Bio-Logic Builder inputs which

generate Boolean function A OR B for a two-input element with inputs A and B.

Specifically:

1. ABSENT=OFF and PR1=A and PR2=B

2. ABSENT=OFF and PR1=A and PR2=B and PR2 has the condition “WHEN B IS ON”

Predictability of the Result

Any unique input to Bio-Logic Builder results in a unique setting of key variables and expressions used

by the algorithm (as defined in the Variables and Expressions section).

Bio-Logic Builder will generate a Boolean function of n variables whose closed form expression is

given by POSNEG REGULATORS OR ABSENT . This is completely predictable and deterministic

for any possible setting of input values.

Correctness of the Result

This section is concerned with the correctness of the algorithm. That is, whether a biologist using the

Biological Operators (positive/negative regulators and conditions/subconditions) will obtain the correct

logical definition of a protein.

It has been shown that the results are predictable for any input, but are they correct from the



Bio-Logic Builder: Supplementary Information 8

standpoint of a biologist using the application? Bio-Logic Builder allows the biologist to define positive

regulators, negative regulators and the ABSENT regulator. It will be shown that the Boolean function

created will match the definitions given to the biologist for using the application.

In this section, the phrase “regulator is active” includes the conditions and subconditions of that

regulator. That is, a positive regulator is only considered active when its Boolean expression which

includes its conditions and subconditions evaluates to TRUE. That is, the expression PRi or NRj is

being discussed in this context.

Positive Regulators and Negative Regulators

There are multiple cases to consider:

• no positive or negative regulators defined

• only positive regulators defined

• only negative regulators defined

• positive and negative regulators defined

Note that this section refers to definitions in the Variables and Expressions section.

No Positive or Negative Regulators defined. In this case the POSNEG REGULATORS sim-

plify to FALSE and therefore the Boolean function evaluates to FALSE OR ABSENT which simplifies

to ABSENT . Thus, if no positive or negative regulators have been defined, the function output depends

on the ABSENT regulator. This matches the definition given to the biologist.

Only Positive Regulators defined. In this case, there are no negative regulators and the Boolean

function evaluates to POS REGULATORS OR ABSENT. Therefore, if any positive regulators are active,

the Boolean function output will be TRUE. This is because POS REGULATORS will evaluate to

TRUE, resulting in the function output of TRUE OR ABSENT which simplifies to TRUE. If all positive

regulators are inactive, the function output will depend on the ABSENT regulator as the function will

evaluate to FALSE OR ABSENT which simplifies to ABSENT . This matches the definition given to

the biologist for positive regulators which do not have associated negative regulators.



Bio-Logic Builder: Supplementary Information 9

Only Negative Regulators defined. In this case, there are no positive regulators and POSNEG REGULATORS

simplifies to FALSE and the Boolean function evaluates to FALSE OR ABSENT which simplifies to

ABSENT . Thus, if only negative regulators have been defined, the function output depends on the

ABSENT regulator. This matches the definition given to the biologist.

Both Positive and Negative Regulators defined. In this case, we have both positive and negative

regulators and the negative regulators are “counteracting” the positive regulators.

For example, when negative regulators y and z override positive regulator x, the result is the Boolean

expression (PRx AND NOT NRy AND NOT NRz).

In this case, if any positive regulator is active and not counteracted by an active negative regulator,

then the Boolean function output will be TRUE. This is because POSNEG REGULATORS will eval-

uate to TRUE and the function output will be (TRUE OR ABSENT ) which simplifies to TRUE. If

each positive regulator is either inactive or overridden by an active negative regulator, then the func-

tion output depends on the ABSENT regulator. This is because the function output will evaluate

to (FALSE OR ABSENT ) which simplifies to ABSENT . This matches the definition given to the

biologist for positive regulators with associated negative regulators.

The ABSENT Regulator

The Boolean expression for the ABSENT regulator is defined to be FALSE if the target state is specified

as OFF, otherwise it is the product of the negations of all inputs (x1 . . . xn). It is not possible to generate

the Boolean term x1 . . . xn in any other way.

If the ABSENT regulator is specified as OFF, the definition guarantees that the Boolean function

output will be FALSE when all regulators are inactive. This matches the definition given to the biologist.

If the ABSENT regulator is specified as ON, the definition guarantees that the Boolean function

output will be TRUE if all regulators are inactive. This matches the definition given to the biologist.



Bio-Logic Builder: Supplementary Information 10

Conclusion

It has been shown that the Boolean function generated by Bio-Logic Builder matches the definitions given

to the biologist and can therefore be considered to be correct.

Conclusion

This document presented a detailed analysis of the Bio-Logic Builder algorithm for generating Boolean

state functions for biological entities. It showed the algorithm to be scalable, predictable, and correct.

References

1. Gerald E. Williams, Boolean Algebra with Computer Applications, (McGraw-Hill Book Company,
1970)

2. Elliot Mendelson, Boolean Algebra and Switching Circuits, (McGraw-Hill, 1970)

3. Franz E Hohn, Applied Boolean Algebra, 2ed, (The MacMillan Company, New York, 1966)

4. J. Eldon Whitesitt, Boolean Algebra and its Applications, (Addison-Wesley Publishing Company,
Reading, Massachusetts, 1961)


