
APPENDIX

MATHEMATICAL ANALYSIS OF THE MODEL

A1. MODEL

The full model is listed here. Note that this model includes populations that are not part of the sexually

active population at risk of acquiring or transmitting infection i.e. married individuals, vaccinated individuals

that are single or married. Mm
j , Am

j and Om
j , where j = S, I denote these populations. These populations

are needed to correctly calculate the prevalence of infection in the total population.

The mathematical model is as follows:

dCU

dt
= (1 − εγp)λ1 − (µ + α1)CU ,

dCV

dt
= εγpλ1 − (µ + α1)CV ,

dAS

dt
= α1CU − βMAASMI/N − (d + α2 + µ)AS ,

dAI

dt
= βMAASMI/N − (d + α2 + µ)AI ,

dOS

dt
= α2AS − βMOOSMI/N − (d + µ)OS ,

dOI

dt
= α2AI + βMOOSMI/N − (d + µ)OI ,

dAm
S

dt
= dAS + α1Cv − (µ + α2)A

m
S ,

dAm
I

dt
= dAI − (µ + α2)A

m
I ,

dOm
S

dt
= dOS + α2A

m
S − µOm

S ,

dOm
I

dt
= dOI + α2A

m
I − µOm

I ,

dMS

dt
= λ2 − βAMMSAI/N − βOMMSOI/N − (d + µ)MS

dMI

dt
= βAMMSAI/N + βOMMSOI/N − (d + µ)MI ,

dMm
S

dt
= dMS − µMm

S

dMm
I

dt
= dMI − µMm

I .

(A1)

We obtain the equation for the total population size by summing the equations for the population subclasses:

N ′ = (λ1 + λ2) − µN.

This equation has the solution N(t) = (λ1 + λ2)/µ + (N(0) − (λ1 + λ2)/µ)e−bt. Thus, the total population

size at equilibrium is N = (λ1 + λ2)/µ as time evolves. In the following, we will discuss the mathematical

analysis of the model (A1).
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We can see from
dCU

dt
= (1 − εγp)λ1 − (µ + α1)CU that limt→∞ Cu(t) = (1 − εγp)λ1/(µ + α1). Since

d(AS + AI)

dt
= α1CU −(d+α2+µ)(AS +AI), which is asymptotic to

d(AS + AI)

dt
= α1(1−εγp)λ1/(µ+α1)−

(d+α2 +µ)(AS +AI), the asymptotically autonomous system theorem [1] implies limt→∞(AS(t)+AI (t)) =

α1(1 − εγp)λ1/((µ + α1)(d + µ + α2)). Using a similar approach, we can show the following asymptotic

behaviors of solutions:

lim
t→∞

(CU , CV , AS + AI , OS + OI , A
m
S + Am

I , Om
S + Om

I , MS + MI , M
m
S + Mm

I , N)

= (CU , CV , A, O, Am, Om, M, Mm, N),
(A2)

where CU = (1 − εγp)λ1/(µ + α1), CV = εγpλ1/(µ + α1), A = α1CU/(d + α2 + µ), O = α2A/(d + µ),

Am = (dA + α1CV )/(µ + α2), Om = (dO + α2Am)/µ, M = λ2/(d + µ), Mm = dM/µ, N = (λ1 + λ2)/µ.

Therefore, we have the following asymptotic system for the infectious classes

dAI

dt
= βMA(A − MI)MI/N − (d + α2 + µ)AI ,

dOI

dt
= α2AI + βMO(O − OI)MI/N − (d + µ)OI ,

dAm
I

dt
= dAI − (µ + α2)A

m
I ,

dOm
I

dt
= dOI + α2A

m
I − µOm

I ,

dMI

dt
= βAM (M − MI)AI/N + βOM (M − MI)OI/N − (d + µ)MI ,

dMm
I

dt
= dMI − µMm

I .

(A3)

Since the equations for Am
I , Om

I and Mm
I can be omitted from the above system, we will first focus on the

stability analysis of the following decoupled system

dAI

dt
= βMA(A − MI)MI/N − (d + α2 + µ)AI ,

dOI

dt
= α2AI + βMO(O − OI)MI/N − (d + µ)OI ,

dMI

dt
= βAM (M − MI)AI/N + βOM (M − MI)OI/N − (d + µ)MI .

(A4)

Denote RC = βMA
A

N

1
d+µ

βAM
M

N

1
d+α2+µ

+ βMA
A

N

1
d+µ

βOM
M

N

α2

d+α2+µ
1

d+µ
+ βMO

O

N

1
(d+µ)2 βOM

M

N
. If we

linearize the system (A4) at zero, then the characteristic equation of the linearized system is

λ3 + B1λ
2 + B2λ + B3 = 0,

where

B1 = 2(d + µ) + (d + α2 + µ),

B2 = 2(d + µ)(d + α2 + µ) + (d + µ)2 − βMO
O

N
βOM

M

N
− βMA

A

N
βAM

M

N
,

B3 = (d + µ)2(d + α2 + µ)(1 − RC).
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By the Routh-Hurwitz condition, all eigenvalues have negative real part if B1 > 0, B3 > 0 and B1B2−B3 > 0.

Here, B1 is always positive, and B3 > 0 if and only if RC < 1. Thus the local stability of the zero equilibrium

of (A4) is given by the following lemma.

Lemma A1. (i) If RC < 1, then the zero equilibrium is locally asymptotically stable.

(ii) If RC > 1, then the zero equilibrium is unstable.

Since the system (A4) is a cooperative system in the biologically feasible region

Γ :=
{

(AI , OI , MI) ∈ R
3
+ : AI ≤ A, OI ≤ O, MI ≤ M

}

it then follows from [4, Corollary 3.2] that the subsequent result holds.

Lemma A2. The following statements are valid:

(i) If RC ≤ 1, the trivial equilibrium (0, 0, 0) is globally asymptotically stable for system (A4) in Γ.

(ii) If RC > 1, the positive equilibrium (A∗

I , O
∗

I , M∗

I ) is globally asymptotically stable for system (A4) in

Γ \ {(0, 0, 0)}.

According to the Lemma A2, we can see that if RC ≤ 1, system (A1) has a unique equilibrium, the

disease-free equilibrium P0. If RC > 1, then system (A1) has a positive endemic equilibrium P ∗. Moreover,

using the theory of internally chain transitive sets (see, e.g., [1, 3])), as processed in [2], we can further show

that RC plays a key role in determining the global dynamics of the whole system:

Theorem A3.

(i) If RC ≤ 1, then the disease-free equilibrium P0 is globally asymptotically stable in R
+
14.

(ii) If RC > 1, then the disease-endemic equilibrium P ∗ is globally asymptotically stable to all nontrivial

solutions.

JUSTIFICATION OF THE USE OF SI FRAMEWORK

In this section, we compare two general models, an SI model (Susceptible-Infected) and a SIL model

(Susceptible-Infected-Latent), to justify the use of an SI model framework in describing the transmission of

genital herpes. A simple SI model is

dS

dt
= λ − β1SI/N − µS,

dI

dt
= β1SI/N − µI,

(A5)
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where N = S + I. An SIL framework to describe the genital herpes transmission is

dS

dt
= λ − β2SI/N − µS,

dI

dt
= β2SI/N − (µ + α1)I + α2L,

dL

dt
= α1I − α2L,

(A6)

where N = S +I +L. In this system, α1 and α2 are the transfer rates between the I and L classes. The total

population sizes for both models is λ/µ. For the SI model (A5) the basic reproduction number is R1 = β1/µ.

For the SIL model (A6) the basic reproduction number is R2 = ((µ + α2)β + α1α2)/((µ + α1)(µ + α2)).

These two models have the same longterm behaviour:

Lemma A4. (i) If the basic reproduction number is less than one, the disease will die out.

(ii) If the basic reproduction number is greater than one, the disease will remain persistence and there is a

positive endemic equilibrium.

When the reproduction number is greater than one, then the infectious population size of the (A5) is

I1 = (1− µ
β1

)λ
µ

while that of the (A6) model is I2 = β2(α2+µ)−µ(α1+α2+µ)
β2(α1+α2+µ)

λ
µ
. To use model (A5) to approximate

(A6), we set I1 = I2. Then we obtain a relationship between β1 and β2:

β1 =
µβ2(α1 + α2 + µ)

β2α1 + µ(α1 + α2 + µ)
< β2.

Therefore, we may estimate the transmission rate for the SI model from SIL model, while using the SI

scheme to describe the disease transmission.
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