
Appendix

For autonomous systems of ordinary di�erential equations, such as (1-3) the
linear stability properties of an equilibrium are determined by the eigenvalues
of the Jacobian matrix evaluated at the equilibrium point [58]. In particular,
the equilibrium is linearly stable when all the eigenvalues have negative real
part, and it is unstable when at least one of them has a positive real part.
We denote with (Xo, Yo,Wo) the equilibrium. We also de�ne Fo = F (Wo),
F ′
o = dF (Wo)/dW , and analogously for the other water-dependent functions

appearing in equations (1-3).

No vegetation. The Jacobian matrix evaluated at the equilibrium (12) is

Jo =

 Fo 0 0
0 Ho 0

−Txo −Tyo S′
o

 .

In this case the eigenvalues coincide with the entries on the main diagonal.
Generally we expect S′

o < 0 which means that the loss of soil water (e.g. through
percolation) increases when the soil water content increases. Therefore the
instability condition (13) follows.

Hygrophilous Species Equilibrium. The Jacobian matrix evaluated at the
equilibrium (15) is

Jo =

 −Fo −Fo k−1FoF
′
o

0 Ho − Fo 0
−Txo −Tyo S′

o − k−1FoT
′
xo


In this case the characteristic polynomial of Jo is easily factored as the product
of a �rst degree and a second degree polynomial:

P (λ) = (Ho − Fo − λ)
[
k−1Fo (−kS′

o + TxoF
′
o + T ′

xoFo)+(
−S′

o + k−1FoT
′
xo + Fo

)
λ+ λ2

]
The second-degree polynomial has strictly positive coe�cients. In fact Fo > 0
is required to have a positive biomass concentration at equilibrium, T ′

xo, F
′
o > 0

and S′
o < 0 as a result of the assumptions of monotonicity discussed in section

(2.1). Therefore the roots of the second degree polynomial have strictly negative
real part. The root of the �rst degree polynomial yields the eigenvalue

λ = Ho − Fo.

whose sign determines the stability of the equilibrium.
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Non-Hygrophilous Species Equilibrium. The analysis is completely anal-
ogous to the hygrophilous case, and the characteristic polynomial is

P (λ) = (Fo −Ho − λ)
[
k−1Ho

(
−kS′

o + TyoH
′
o + T ′

yoHo

)
+(

−S′
o + k−1HoT

′
yo +Ho

)
λ+ λ2

]
.

However, in this case the sign ofH ′
o is not known beforehand. IfH

′
o < T−1

yo

(
kS′

o − T ′
yoHo

)
then the second-degree polynomial has a negative constant term and positive
�rst- and second-degree coe�cient. Therefore it has a positive and a negative
real root, which implies instability.

Coexistence Equilibrium. The Jacobian matrix at the coexistence equilib-
rium (21), (22) is

Jo = −

 kXo kXo −XoF
′
o

kYo kYo −YoH
′
o

Txo Tyo YoT
′
yo +XoT

′
xo − S′

o

 .

The characteristic polynomial of Jo is not easily factored. Although the Cardano-
Lagrange formulae would allow to write down explicitly the eigenvalues of Jo,
the resulting expressions are rather unwieldy, and it is not straightforward to
determine the sign of the real part of the eigenvalues. Therefore we use an
indirect approach to determine the stability of a coexistence equilibrium. First
we observe that the determinant of Jo is

∆ = −k(Txo − Tyo)(F
′
o −H ′

o)XoYo. (1)

Recalling that the determinant is the product of the three eigenvalues of Jo, it
is clear that a necessary condition for stability is ∆ < 0. All the quantities ap-
pearing in the expression above are positive, except for H ′

o which may have any
sign. However, (F ′

o −H ′
o) > 0, because, according to the assumptions discussed

in section (2.1), we have F (W ) < H(W ) for W < Wo and F (W ) > H(W ) for
W > Wo. Therefore, the necessary condition (25) follows. In order to rule out
the case of two eigenvalues both with positive real part, it is necessary to sup-
plement the criterion (25) with an additional inequality. This is accomplished
by the use of the Routh-Hurwitz criterion. A review of the criterion is well
beyond the scope of this paper. See exemples [1] for an exhaustive treatment of
the subject, or [2] for a simple exposition with examples taken from biological
problems. In our case, after straightforward but long and tedious calculations,
we obtain that the equilibrium is stable if and only if ∆ < 0 and
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H ′
o > −

(
TyoY

2
o T

′
yo + TyoXoYoT

′
xo + kTyoY

2
o + kTxoXoYo + qTyoYo

)−1[
F ′
o

(
TxoXoYoT

′
yo + TxoX

2
oT

′
xo + kTyoXoYo + kTxoX

2
o + qTxoXo

)
+

+kY 3
o T

′2
yo + kXoY

2
o T

′2
yo + 2kXoY

2
o T

′
xoT

′
yo + 2kX2

oYoT
′
xoT

′
yo +

+k2Y 3
o T

′
yo + 2k2XoY

2
o T

′
yo + 2kqY 2

o T
′
yo + k2X2

oYoT
′
yo +

+2kqXoYoT
′
yo + kX2

oYoT
′2
xo + kX3

oT
′2
xo + k2XoY

2
o T

′
xo +

+2k2X2
oYoT

′
xo + 2kqXoYoT

′
xo + k2X3

oT
′
xo + 2kqX2

oT
′
xo +

+k2qY 2
o + 2k2qXoYo + kq2Yo + k2qX2

o + kq2Xo

]
where we have set −S′

o = q > 0. Although this expression is too long to be of
any direct practical use, it still carries useful information if one observes that,
at least for the biologically relevant case of Xo, Yo > 0, the right-hand side is
a negative quantity. Therefore, for positive values of the equilibrium biomass
densities, if one �nds ∆ < 0 and a positive value of H ′

o, then the coexistence
�xed point is stable.
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