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Appendix S1

Supplementary Note 1: Irreversible Approximation

Consider a reaction system consisting of a reversible reaction and an irreversible reaction,

x+ y
α−⇀↽−
β
z, z + u

γ−→ v. (1)

It is known that system (1) eventually tends to the equilibrium state x = z = 0 no matter whether the
first reaction is reversible (β > 0) or irreversible (β = 0), suggesting that the reversibility of the first
reaction does not change the long term dynamics of the reaction in the qualitative manner. However, the
reversibility does affect the efficiency of the completion of reaction in the quantitative manner because
the reverse reaction lowers the production of species z. From the dynamical point of view, system (1) is
analogous to the following reaction system

x+ y
α′−→ z, z + u

γ′−→ v, (2)

where α′ ∼ α and γ′ ∼ γ as β � α.
In the model, we assume that the fragments rejoining is an irreversible process. In other words, after

two pieces of fragments join together, the resulting fragment does not split. Thus the combination of
recruitment process and rejoining process forms a system similar to (1) if the recruitment is reversible,
while the irreversible approximation of recruitment process leads to system (2). Therefore, we conclude
that the reversibility of the recruitment process may change the biphasic profile of the mean rejoining
time slightly in the quantitative manner, but not in the qualitative manner.

Supplementary Note 2: System of Biochemical Reactions

The DNA fragments rejoining involves three steps of reactions and leads to a large system of biochemical
reactions. To study the model, we need to identify all the involving species and reactions.

Biochemical Reactions

Taking into consideration all the reactions involving in the three steps of DNA fragments rejoining, we
have a series of biochemical reactions listed below

Xn + E
k1−→ XE

n , n ≥ Lm,
XE
n + E

k1−→ XEE
n , n > L∗,

XE
n +XE

m
k2−→ XR

n+m, Lm ≤ n,m ≤ L∗

XE
n +XE∗

m
k2−→ Xr∗

n+m, Lm ≤ n ≤ L∗ < m,

XE∗
n +XE?

m
k2−→ X∗?n+m, n,m > L∗,

XR
n

k3−→ Xn,

Xr∗
n

k3−→ X∗n.

(3)

where ∗ and ? are repair protein E, protein residue r or none ∅. Note that some species can be produced
through different reactions. For instance,

XE
n +XE

m
k2−→ Xn+m,

XE
n−1 +XE

m+1
k2−→ Xn+m,

Xr
n+m

k3−→ Xn+m,

as n,m > L∗.
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Reacting Species

Assume that DNA fragments of different length are different species. When the DNA fragments of the
same length are treated to be distinct with or without repair protein E, the protein residue r or R
attached, more species will be introduced into the system. Collectively, all the species involving in the
biochemical reactions of DNA fragment rejoining are listed below

X =
(
Xn, X

E
n , X

EE
n , XrE

n , Xr
n, X

rr
n , X

R
n

)
. (4)

Because extremely short fragments (n < Lm) cannot recruit Ku, XE
n exists only if n ≥ Lm and similarly

XEE
n exists for n > L∗. By considering how other species are produced, we may notice that XR

n is well
defined for 2Lm ≤ n ≤ 2L∗, Xr

n and XrE
n for n > Lm +L∗ and Xrr

n for n > 2L∗. Because of these seven
types of derivative species with the same length, a large amount of species have to be included into the
system when different lengths are taken into consideration.

Large Network of Reactions

If we let #
(
Xn

)
be the number of DNA fragments of length n and assume that the total length of a DNA

sequence is LT , then

LT =
∑

1≤n≤LT
∗,?∈{E,r,R,∅}

n#
(
X∗?n

)
,

whenever X∗?n is well defined, where # (X∗?n ) may be zero. As LT is large, the DNA fragments rejoining
leads to a large network system consisting of approximately 6LT species and 9

16L
2
T reactions. Note that

short fragments of length n < Lm do not participate in any reaction.

Supplementary Note 3: Stochastic Simulation by Gillespie’s Algorithm

Simulation of such a large system is computationally expensive, especially when stochastic simulation is
adopted. It is known that 1Gy ionizing radiation produces 25 − 35 DSBs [1] and hence similar amount
of DNA fragments. Therefore, the computational cost can be tremendously reduced if we consider only
the possible involving reactions associated with the prescribed initial fragments distribution, instead of
all the reactions.

Gillespie’s Algorithm

Precisely, for a given positive integer K0, let {(n0k,m0
k)} be a sequence of positive integer pairs such that

n0k,m
0
k ≥ 1 for 1 ≤ k ≤ K0. Then a prescribed initial DNA fragments distribution can be written as

S0 = {(Xn0
k
,m0

k), k = 1, 2, . . . ,K0},

which consists of m0
k pieces of DNA fragments of length n0k. Denote by R the set of all possible reactions

associated to a given set S of species, then it is readily to see that

R0 =
{
Xn0

k
+ E

k1−→ XE
n0
k
, if n0k ≥ Lm

}
k=1,...,K0

.

with the associated propensity functions defined by

a0k =
k1
V
Xn0

k
E, if n0k ≥ Lm.

Set
a00 =

∑
1≤k≤K0,n0

k≥Lm

a0k.
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By the Gillespie’s direct algorithm of stochastic simulation [2], pick randomly a pair of real numbers
(r01, r

0
2) satisfying uniform distribution on the interval [0, 1]. Then the first reaction time is given by

τ1 =
1

a00
ln

(
1

r01

)
, (5)

and the first firing reaction is reaction j1 satisfying∑
1≤k≤j1,n0

k≥Lm

a0k > r02a
0
0 ≥

∑
1≤k≤j1−1,n0

k≥Lm

a0k. (6)

Consequently at time t = τ1 when the first reaction step is completed, the set of reacting species is
updated to

S1 =
{(
Xn0

k
,m0

k

)
, k 6= j1;

(
Xn0

j1
,m0

j1 − 1
)
,
(
XE
n0
j1

, 1
)}

.

Hence the associated reaction set R1 and propensity functions {a1k} are revised correspondingly. Repeat
this process of Gillespie’s stochastic simulation until the reaction set R is an empty set, that is, no more
reactions can happen. Note that the propensity functions of the second order reactions for fragments
rejoining are given by

k2
V
XE∗
n XE?

m or
k2
2V

XE∗
n

(
XE∗
n − 1

)
as XE∗

n and XE?
m are different or the same species, respectively. In the release step that is a first order

reaction, the propensity functions are of the forms

k3X
r∗
n or k3X

R
n .

As a summary, the Gillespie’s stochastic simulation is preformed in the following steps.

0. Initialize DNA fragments distribution S0 and reaction set R0 at t = 0.

1. Calculate propensity function a0 according to R.

2. Choose (r1, r2) satisfying uniform distribution on [0, 1].

3. Calculate τ and j as in (5) and (6), respectively.

4. Update the set of reacting species S and reaction set R at t = t+ τ .

5. End simulation if R is empty or return to step 1 otherwise.

Kinetics of DNA Fragments Rejoining

To mimic the kinetics of DNA fragment rejoining, we need to record the number or the fraction of DNA
fragments in each step of reactions. In other words, we count

MT (ti) =
∑

1≤k≤Ki
∗,?∈{E,r,R,∅}

#
(
X∗?ni

k

)

after reaction step i is completed, where #(Xnk
) is the number of fragments of length nk. Because DNA

fragments rejoining is assumed to be irreversible, its kinetic profile must be in the non-increasing manner
and undergo no change after all the repairable fragments are rejoined.

Moreover, due to the stochastic features of the DNA fragment rejoining, the kinetic changes and
total rejoining time may be very different although the simulations start from the same initial fragments
distribution and share the same decreasing profile. Therefore, the mean value of total rejoining times
obtained by numerous simulations is considered as the mean rejoining time associated to a specific initial
fragments distribution, as used in Figures 3(a-d).
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Supplementary Note 4: Comparison with Experimental Data

Parameters

Ku is an abundant heterodimeric nuclear protein (Ku70/Ku80). It was estimated that around half a
million copies of Ku70/80 complex are produced in the human cells [3]. Hence, as suggested in [4] that
there is an optimal level of repair enzymes within cells for optimizing DNA repair and the precise value
of the repair enzyme concentration is of some relevance, we suppose, in this model, that the amount of
repair protein E remains constant in a relative normal human cell line and

E = 4× 105.

Because the recruitment of repair proteins and fragments rejoining are all second order reactions, the
reaction rate will be dependent on the volume of the reacting solution. Since DNA is located in the
nucleus and all the reactions take place in the nucleus, we take the volume V of the nucleus for this
purpose and assume that

V = 2× 10−10ml,

where ml is milliliter. It is known that Ku starts accumulation at DSBs within a few seconds and reaches
its maximum at around 3 minutes [5]. Thus we assume this rate is given by k̄1 = 10/minute = 600/h,
where h is hour. Because k̄1 depends on the concentration of Ku and the volume V , we have

k̄1 = k1
E

V
=⇒ k1 = 3× 10−13ml/h.

Recent study revealed that Ku releasing from DNA is through ubiquitylation and dependent on the
length of DNA. Effective removal of Ku from DNA requires DNA longer than 50bp and may take 30-60
minutes [6]. Then we assume that the repair protein residue is released in the similar time range and set

k3 = 1/h.

Up to date, there is no published data for measuring or estimating the second order reaction rate constant
k2, which is related to the fragments rejoining rate k2

V X
E∗
n XE?

m . Alternately, DNA ligation rates were
proposed and set to be 0.03 in the fast repair kinetics and 0.003 in the slow kinetics [7] (Supplementary
Document: Table S2). Thereby, we set

k̄2 =
k2
V

= 0.02/h =⇒ k2 = 4× 10−12ml/h.

Comparison with Experimental Data

The kinetic data of DSBs repair is achieved by taking the average value of fractions of foci observed in
the experiments. In order to compare with experimental data, we need the average kinetics of fragment
rejoining. Assume that there are N sets of kinetic data by N simulations,{(

tji ,MT (tji )
)
, i = 1, . . . , Pj

}
, j = 1, . . . , N,

where {tji}
Pj

i=1 is a set of Pj time points that is either regular (equally spaced) or irregular (not equally
spaced) and any two sets of time points may have no overlap. Because we know that each kinetic profile
is non-increasing, we can choose N decreasing functions fj(t), each of which interpolates one set of
kinetic data and is well defined at the given P time points, say {t̄i}Pi=1, where we like to compare with
experimental data. Hence we take the averaged function

f̄(t) =
1

N

N∑
i=1

fi(t)
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to describe the averaged kinetics from simulation data. Finally, the comparison is conducted between the
experimental data set and interpolated simulation data set {f̄(t̄i)}, as seen in Figure 4.

On the other hand, in the biological experiments, DNA double strand breaks (DSBs) are marked by
53BP1 foci. DSBs repair is testified by counting the numbers of foci at specific time points to recover
the repair kinetics [8]. Complete DSBs repair results in zero foci present. In contrast, our model is for
DNA fragments rejoining, whose kinetics shows the change of number of fragments and that complete
rejoining leads to one fragment at last. To compare with experimental data, therefore, we consider the
kinetic change of the ratio

MT (t)− 1

MT (0)− 1

which represents the ratio of DSBs and hence foci remaining. Here MT (t) is the total number of DNA
fragments and MT (t)− 1 the total number of DSBs at time t.
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