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Supporting Methods

Neural differentiation of mESCs

We followed the protocol of Ying et al. [65,66] to differentiate mESCs to neural precursors (NPs). Briefly,

undifferentiated ES cells are plated as a monolayer on gelatin-coated dishes in media lacking leukemia

inhibitory factor (LIF), serum, and any growth factors; the absence of LIF prompts mESC differentiation,

and in conditions without serum or growth factors the cells largely commit to the neural lineage. The cells

acquire a NP morphology by 5 days after plating, marked by expression of SOX1 [66]. We used the 46C

cell line, which is a heterozygous knock-in mESC line modified to express green fluorescent protein (GFP)

from the SOX1 locus [67]. SOX1 expression is restricted to proliferating neuroectodermal precursors and

the lens; thus in this protocol GFP expression can be used to distinguish NPs from any undifferentiated

cells which may persist. We performed FACS analysis of NP populations generated through this protocol

and found approximately 80% of cells were GFP-positive at day 5 (data not shown). Cells were used at

passage number no greater than 10.

Library preparation and SOLiD sequencing

As illustrated in Figure 1 in the main text, cells from each population (undifferentiated, UN, and Day

5 neural precursors, NP) were fractionated to their nuclear and cytoplasmic components using a gentle

detergent to disrupt the outer cell membrane while preserving intact nuclei (described in [68]) before

RNA extraction. Extracted RNAs (approximately 100-600 µg) were treated with DNase to remove

contaminating DNA, then polyadenylated transcripts were selected with Oligotex resin (Invitrogen). We

then chose to remove the polyA tails to allow sequencing up to the very 3’ ends of the transcripts; to

do this we annealed an oligo dT18 primer (Invitrogen) to the RNA samples, then treated with RNase H

(New England Biolabs). We purified these RNAs using a G50 column (Roche) to remove oligos smaller

than 25 bp, followed with another DNase treatment, and then used the Ribominus kit (Invitrogen) to

deplete our RNAs further of rRNA. Next, RNAs (400 ng) were fragmented using either 1 µg Nuclease

P1 (Sigma) for 10 or 60 minutes as previously described [68], or 1 U RNase III (Applied Biosystems,

now Life Technologies) for 10 minutes, according to the instructions in the SOLiD Whole Transcriptome

Analysis Kit (Applied Biosystems). The P1 endonuclease, from Penicillium citrinum, is known to cut

RNA in single-stranded form, whereas RNase III demonstrates more uniform cleavage. It should be noted
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that as Nuclease P1 does not fragment uniformly along an RNA molecule, our sequencing reads from this

treatment are not expected to be distributed uniformly along transcripts.

We used the Small RNA Expression Kit (SREK, Applied Biosystems) along with our fragmented

RNAs to produce the final 11 strand-specific sequencing libraries (Fig. 1, Table S1), with insert sizes of

approximately 90-190 bp. Equimolar concentrations of each library (excepting Barcode B06, for which we

used twice the concentration) were used as the starting material for emulsion PCR. Our RNA-Seq libraries

were sequenced with the SOLiD V3 platform, yielding 50-bp singleton reads. For transcript discovery

purposes we disregarded fragmentation enzyme and combined all subsequent sequencing reads from the

same cell/compartment type together in our analyses. In the remainder of this supplement, as in the main

text, we will use the notations UnNuc, UnCyt, NPNuc, and NPCyt to refer to undifferentiated nuclear,

undifferentiated cytoplasmic, day 5 neural precursor nuclear, and day 5 neural precursor cytoplasmic

RNAs/libraries/reads, respectively.

Initial mapping of RNA-Seq reads

Reads were mapped in sequential stages to the mouse genome (UCSC assembly mm9) using the Applied

Biosystems SOLiD Small RNA Analysis pipeline (Corona), as described previously [68]. First, we gen-

erated a filter file that included SOLiD adaptor sequence, rRNAs, and small RNAs (including tRNAs,

miRNAs, and others). We also generated a target file (exon+introns) based on UCSC Known Genes [69]:

this file contains for each gene the complete genomic sequence from transcription start to transcription

end; overlapping genes were merged. Finally, we generated a file containing known exon junction se-

quences; this file contains 50 bases upstream and downstream of all unique splices represented in UCSC

Known Genes. To map reads, we first removed any reads mapping to the filter file, then mapped to the

exon+introns target file (sense and antisense). Any remaining reads were then mapped to the genome.

We then performed a second round of mapping, first filtering the reads as we did in the first round, and

then mapping to the splice junction file. This mapping strategy is illustrated in Figure S1.

At each mapping stage, up to 15 hits per read were allowed. Any reads mapping more than 15 times

were discarded. Mapping to the genome was performed chromosome by chromosome, and thus up to

15 hits per chromsome were allowed. In subsequent analyses we have worked only with reads that have

mapped singly in our pipeline. Mapping statistics are shown in Table S1. Note that two barcodes, B14

and B15, were part of a separate project and were not used in this analysis, but are presented here for
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completeness of run information.

We note that to detect spliced reads, several RNA-Seq studies have mapped against a set of “all

possible” splice junctions, consisting of all possible combinations of exons from a given annotation (as an

example, see [70]), whereas in contrast we have only mapped against known splice junctions. There are

several reasons for our choice of mapping. First, we believe that the mouse genome and UCSC Genes are

fairly well annotated at this point, such that splices occurring in the ”all possible” set and not the known

set would be rare. Therefore mapping to “all possible” junctions could create false positive mappings that

could be difficult to distinguish from true novel splices. Second, the set of “all possible” splice junctions

is itself incomplete, since it does not include possible splices in areas of novel transcription. As this study

was focused on discovering novel transcripts, and not novel isoforms of existing transcripts, we did not

feel there was much information to be gained through mapping to the “all possible” set. Finally, and

perhaps most importantly, our read coverage was not sufficiently high to enable transcript assembly from

spliced reads alone (see ”Novel transcript assembly” section in Text S1 and Fig. S10). Thus, while we

expect our mapping rates could show modest increases with a pipeline using a set of “all possible” exon

junctions, we do not expect this would have a significant impact on the interpretation of our data.

Coverage of known nuclear and cytoplasmic RNAs

Perusal of the RNA-Seq data indicates there is good separation of the nuclear and cytoplasmic RNAs in

each cell type. As shown in Figure S2, RNAs for protein-coding genes show expression in both cytoplasmic

and nuclear libraries; this is expected, as translation takes place in the cytoplasm while transcription takes

place in the nucleus. Also as expected, intron retention is higher in nuclear libraries, corresponding to

transcripts that have been incompletely processed. Nuclear RNAs show substantial enrichment in the

nuclear over the cytoplasmic libraries, as illustrated with AIR, a ncRNA known to be nuclear-retained

and to evade splicing [71].

Coverage of housekeeping genes

To assess the depth of coverage of our RNA-Seq data, we examined coverage of known housekeeping

genes, which Warrington et al. defined for human tissues and categorized into 5 expression levels (low,

low-medium, medium, medium-high, and high; [72]). In this analysis we excluded all ribosomal RNAs,

as reads mapping to these RNAs were filtered out in our mapping pipeline. To find mouse homologs
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of these human housekeeping genes we took the representative human mRNA sequence alignments from

the xenoMrna track of the mm9 assembly of the UCSC Genome Browser; the longest isoforms of the

corresponding mouse UCSC Genes in these regions were taken as the mouse homologs. To measure gene

expression, we calculated the RPKM (reads per kilobase of exon model per million mapped reads, [73])

for each mouse housekeeping gene for each of our pooled RNA-Seq libraries. The distributions of RPKM

values for each Warrington-defined expression level category are shown in Figure S3.

As illustrated in Figure S3, we detect expression of all Warrington-defined housekeeping genes except

two predicted in the medium expression level; in all library types RPKM values were 0 for each of these

two genes, which may reflect a species-specific difference. Interestingly, there is a general concordance

with the expression level determined by Warrington and the RPKM values observed in our RNA-Seq

data. Thus our RNA-Seq data is of sufficiently high coverage to detect even lowly-expressed genes.

Comparison with neural differentiation microarray data

We compared gene expression in our RNA-seq data with that determined with microarrays. Abranches

et al. [74] performed microarray analysis on neural differentiation of 46C mESCs, using a protocol mod-

ified from Ying et al. [65, 66]. Abranches’ protocol differs from Ying’s, and thus ours, by the use of a

commercially available N2B27-based alternative media, RHB-A (listed in Abranches’ paper as available

from StemCellSciences Inc., UK), instead of Ying’s N2B27. They report in this media cells commit to

the the neural lineage faster and in greater percentage than in N2B27. Additionally Abranches et al.

measure gene expression at more finely spaced timepoints in neural differentation; they define transient

NPs (tNPs), neurogenic NP (nNPs), and rosettes as three different NP populations arising in their dif-

ferentiation process with distinct gene expression signatures. In the Ying protocol, neural rosettes are

not expected to form until after replating onto to laminin-coated dishes [65]; neural differentiation in our

study was not taken this far. A comparison of the two protocols is shown in Figure S4.

Abranches et al. defined sets of genes upregulated in each of their 4 cell populations. We chose to

compare our RNA-Seq results with these gene sets (ES, tNPs, nNPs, and Rosettes) to verify the quality

of our neural differentiation as well as assess the completeness of transcriptome coverage in our RNA-

seq data. To evaluate tissue specificity in our RNA-Seq data, we used a measure we have termed NP

Specificity, based on the tissue specificity (Ts) score described previously [75,76]. Winter et al. [75] define

Ts for each gene and each tissue in an expression compendium as the gene’s fractional expression in
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that tissue relative to the sum of its expression in all tissues. We applied this measure to our RNA-Seq

data using the RPKMs computed for each gene in each cell and compartment type (Equation S1), and

examined the distribution of scores for each of the 4 gene sets described by Abranches (Fig. S5).

NP Specificity =
RPKMNPNuc + RPKMNPCyt

RPKMNPNuc + RPKMNPCyt + RPKMUnNuc + RPKMUnCyt
(S1)

As expected, the NP specificities for the ES gene set defined by Abranches et al. are low, while

the three neural precursor gene sets show much higher NP specificity (Fig. S5). Though our neural

differentiation protocol and timepoints are not directly analogous, this analysis indicates genes expected

to be upregulated in undifferentiated 46Cs or 46C-derived neural precursors are indeed showing their

expected expression patterns in our data; further it indicates that our RNA-Seq coverage is of good

enough depth to recapitulate results seen in a similar study.

Novel transcript assembly

We initially used Cufflinks (v0.8.1) to assemble transcripts from our data [77]. Cufflinks takes in read

alignments and, based on overlapping reads, outputs putative full transcript models with RPKM infor-

mation (note Cufflinks technically reports a revised measure termed FPKM, for fragments per kilobase

of exon per million mapped fragments; this measure is applicable to both single-end and mate-paired or

paired-end reads and is equivalent to RPKM for single-end reads, used in this study). While Cufflinks

does an excellent job assembling transcripts with high coverage and provides a good basis for transcript

assembly, for less-highly expressed genes there are as a rule some interruptions in read coverage along

the transcript, leading Cufflinks to predict several short transcripts within what should be a larger single

transcript. Certainly increased sequencing depth or the use of paired-end sequencing could help reduce

this problem, but given the tremendous dynamic range of expression levels within a cell, one would ex-

pect gaps in coverage within transcripts may always be present to some extent in RNA-Seq experiments.

Therefore we desired a meta-assembly of Cufflinks-determined transcripts, which we will hereafter refer

to as “contigs”.

To address this issue, we sought to determine if there is a measurable difference in expression levels

along a gene versus in two neighboring genes. We define “adjacent internal exons” as two neighboring

exons within a gene, and “adjacent outer exons” as the last exon and first exon of two neighboring genes
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on the same strand. Using CufflinksG, which maps reads to a gene model, we determined the RPKMs for

all isoforms of all genes in UCSC Known Genes [69]. We then selected only a single isoform for each gene,

choosing the isoform with the highest RPKM. We reran CufflinksG on all exons in this single-isoform

gene set, and for each exon converted its RPKM value to a “RPKM percentile” value; this value indicates

for each exon its percentile rank among all exons in the gene set based on its RPKM. We then plotted the

distributions of the RPKM percentile differences (absolute value) between all adjacent internal exons and

all adjacent outer exons, using a Cufflinks-reported RPKM of 12 or higher to consider only those exons

in expressed genes and pairs of genes. We performed this analysis for each of our 4 pooled RNA-Seq

libraries to find adjacent internal exons show more similarity in RPKM percentile than do adjacent outer

exons (Fig. S6).

Reasoning that the Cufflinks-determined contigs represented a situation analogous to the exon analysis

just described, we thought to merge neighboring Cufflinks contigs with RPKM values reminiscent of the

adjacent internal, and not adjacent outer, exons in the above analysis. The analysis in Figure S6 treats all

adjacent internal exon pairs independently, regardless of gene of origin, but when choosing a cutoff to link

contigs into full transcripts (analogous to linking exons into complete genes), we wanted to consider the

average RPKM percentile difference across the adjacent internal pairs within a gene. This distribution

is shown in Figure S7, and Figure S8 shows in more detail the distributions of the RPKM percentile

differences for adjacent outer exons. Together Figures S7 and S8 suggest cutoffs can be chosen to include

the values seen for most adjacent internal exon pairs while excluding the values observed for most adjacent

outer exon pairs.

Additionally, we considered the length of sequence over which to allow neighboring contig joining. We

examined the distribution of intron lengths, considering all unique introns in UCSC Known Genes, and

compared this to the distribution of “gene spacers,” which we define as the intergenic regions between

two neighboring transcripts on the same strand. We found choosing a length of 11 kb would incorporate

90% of known intron lengths, while including only 23% of known gene spacers. Based off the analyses in

Figures S7-S8, we first merged any Cufflinks transcripts with an RPKM percentile difference of 10 or less

that were within 11 kb of each other and on the same strand. However, after inspection of the resulting

novel merged transcripts, we modified this to merge Cufflinks transcripts within an RPKM percentile

difference of 5 or less, keeping the same 11 kb maximum distance requirement. Using this method we

sharply reduced the number of transcript fragments per UCSC Known Gene while reducing the number
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of bad joins, shown in Figure S9 and Table S2. In Figure S10, we show an example of Cufflinks output at

Nestin, an undifferentiated ES cell marker, in undifferentiated nuclear RNA, along with merged Cufflinks

output using each of the above criteria.

We determined the analogous transcripts across the RNA-Seq libraries simply by overlapping the

merged Cufflinks contains in a given library type with all other library types. To determine novel tran-

scripts, we compared our merged Cufflinks contigs against UCSC Known Genes. This analysis returned

a set of 5127 novel intergenic transcripts greater than 200 bases long from the merged Cufflinks output

allowing an RPKM percentile difference of 10; in the merged Cufflinks set allowing an RPKM percentile

difference of 5, 6809 such novel transcripts were returned. The 18 novel enhancer-associated transcripts

described in the main text are indicated in Table S3.

Overexpression of Zmynd8as does not affect enhancer activity

We tested if the addition of Zmynd8as cDNA could increase the enhancer activity of its P300 site in

undifferentiated mESCs or day 5 NPs via luciferase assay. Regions spanning the Zmynd8as P300 site

were cloned as described in Methods in the main text. For these overexpression luciferase experiments, we

introduced our enhancer regions upstream of luciferase in our TK-pGL4.12 vector; to do this we inserted

a Gateway rfA cassette (Invitrogen) directly upstream of the TK promoter at the HindIII site using the

Gateway Conversion System (Invitrogen) and transferred our enhancer clones from pENTR-D/TOPO to

this vector using the Gateway LR system (Invitrogen). We additionally cloned Zmynd8as cDNA and its

reverse complement into an expression vector under the control of a CMV promoter (see Methods in main

text). Cells were transfected with an 8:1:1 mass ratio of enhancer construct:cDNA construct:pRL-TK

(Promega) using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. pEGFP-

N1 (Clontech) was also used as a control. Cells were assayed approximately 24 hours later with the

Dual-Luciferase System (Promega), and luciferase activity was measured in a Victor Light Luminescence

Counter (Perkin-Elmer); three technical replicates were measured for each biological replicate. In figures,

luciferase activity (ratio of firefly counts per second/renilla counts per second) for each enhancer construct

is shown relative to the activity observed for TK-pGL4.12 (ratio of enhancer construct luciferase activity:

TK-pGL4.12 activity). Error bars represent 95% confidence intervals over the three biological replicates.

All experiments were repeated at least twice.

As illustrated in Figure S13, the strong enhancer activity of the Zmynd8as P300 site observed in
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undifferentiated mESCs is largely ablated in day 5 NPs, consistent with the broad loss of H3K4Me1 across

this region in neural precursors in Mikkelsen’s study ( [78]; Figs. 2, S11) and the loss of P300 enrichment

determined by ChIP-qPCR. Further, the exogenous expression of Zmynd8as does not appear to have an

effect on the activity of the enhancer. This fact is especially telling in undifferentiated mESCs, which by

nature express any other factors that might be needed should such an interaction occur endogenously.

Thus it appears Zmynd8as does not behave in the same manner as the ncRNA Evf-2 [79], and does not

increase enhancer activity at the P300 site.

Zmynd8 and Brd1 functional domains and the impacts of the short isoforms

Zmynd8 has been implicated in chromatin silencing and transcriptional repression [80,81], particularly of

neuronal genes in non-neuronal lineages. The full-length Zmynd8 protein contains 4 functional domains

(Fig. S14A). At the N-terminus is a zinc finger domain, which has hits to zinc finger RING-, FYVE-, and

PHD-type domains in Interpro [82,83], in the middle are a bromodomain and a PWWP domain, and at

the C terminus is a MYND domain. Additionally, Zmynd8 contains a domain of unknown function. The

short isoform of Zmynd8 in the UCSC Genome Browser is predicted to be a target of nonsense-mediated

decay (NMD, reviewed in [84]), because its final splice site occurs downstream of the termination codon

of the ORF. Notably, this final splice site encompasses a SINE element. The short Zmynd8 isoform we

find differs slightly at this apparent final splice junction, with the apparent 5’ splice site occurring 1 base

downstream of the site in UCSC Genes, for a non-canonical UU-AG intron that surrounds the SINE

exactly. Further analysis of the genomic DNA in this region reveals the 46C cell line contains an allele

lacking this SINE, and thus the apparent final splice site in our observed Zmynd8-short presumably does

not represent an intron, but rather a structural difference between the 46C genome and the reference

mouse genome. Without this final splice site, Zmynd8-short is not expected to be subject to NMD.

Moreover, the high levels of the short isoform in the cytoplasm (Figs. 2A, S11) suggest this transcript

is not a target of NMD, widely known as a speedy process. The expected protein domains if the short

isoform of Zmynd8 is in fact translated are shown in Figure S14A.

Brd1 is reported to act in a complex with HBO1, a MYST histone acetyltransferase, to establish

acetylation of histone 3 lysine 14 (H3K14Ac) at developmental regulator genes [85]. The full-length Brd1

protein contains 5 functional domains [82, 83]: an N-terminal enhancer of polycomb-like (EPL) domain,

two zinc finger domains of RING/FYVE/PHD-type, a bromodomain, and a C-terminal PWWP domain
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(Fig. S14B). The truncated Brd1 protein from the short isoform lacks the PWWP domain (Fig. S14B).
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