## Appendix S2: Shogun Implementation and Algorithm

To describe the with-bias algorithm, we start from the 2-class $\nu$-formulation as stated in Eq. (28) in [1] and repeated here

$$
\begin{array}{ll}
\underset{\boldsymbol{\alpha}^{\prime}}{\inf } & \frac{1}{2} \boldsymbol{\alpha}^{\boldsymbol{\top}^{\top}} \boldsymbol{\mathcal { K }} \boldsymbol{\alpha}^{\prime} \\
\text { s.t } & \boldsymbol{y}^{\top} \boldsymbol{\alpha}^{\prime}=0, \quad \boldsymbol{\alpha}^{\prime \top} \mathbf{1}=\nu, \quad \mathbf{0} \leq \boldsymbol{\alpha}^{\prime} \leq \frac{1}{N} \mathbf{1}
\end{array}
$$

We first notice that the two equality constraints can be expressed by class-wise total weight mass conditions: $\boldsymbol{\alpha}_{1}^{\prime \top} \mathbf{1}=\boldsymbol{\alpha}_{-1}^{\prime}{ }^{\top} \mathbf{1}=\nu / 2$. Due to these equality constraints, reasonable subproblems require $y_{i}=y_{j}$; otherwise, neither $\alpha_{i}^{\prime}$ nor $\alpha_{j}^{\prime}$ could be changed. Consequently this constraint is implemented by the selection strategy and a proper choice of the initial solution candiate. Note that feasible initial points also require $\nu \leq C \cdot N_{\min } / N$. To recover the problem in Eq. (15) in the main manuscript, we need to perform a variable transformation $\boldsymbol{\alpha}^{\prime} \mapsto \frac{\alpha}{\mu \cdot N}$ combined with the choice $\nu=C /(\mu \cdot N)$.

For 2-class problems, LIBSVM's working set selection strategy for $\nu$-SVMs (cf. WSS 5 in [1]) traverses the active set twice and thus requires an effort of $\mathcal{O}(2 N+2 T)$, where $T$ is the time to compute a kernel row. A straightforward generalization traverses the active set for each of the $C$ classes leading to an effort of $\mathcal{O}(C N+C T)$ which is what we used throughout experiments. However, when ordering examples, such that $y_{i} \leq y_{j}$ for $i<j$ and by creating $C$ arrays to hold the maximum class-wise gradient etc. the computational complexity can be further reduced to $\mathcal{O}(C+N+C T)$.

We now describe our without-bias algorithm. We now face the problem that due to the lack of a bias there is no sum-to-one constraint on the $\alpha_{i}$ 's anymore in the dual optimization problem, Eq. (15) in the main manuscript. Therefore the line search performed by SMO cannot be solved analytically anymore. As a remedy we implemented a without-bias solver based on SVMlight, which basically can deal with any quadratic programm. The algorithm is described in Algorithm 1. We thereby employ the notation $\mathcal{K}=\boldsymbol{\kappa}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)_{i, j=1}^{n}$ for the block kernel matrix as defined in Eq. (7) in the main manuscript.

The algorithm has as input an accuracy parameter $\epsilon$ (in our experiments $\epsilon=0.001$ was chosen) and an active set size $Q$ ( $Q=40$ was chosen). The main FOR loop (Lines 2-3) iterates until the stopping criterion (duality gap less than $\epsilon$ ) is fulfilled. Line (a) computes the set of $Q$ active variables based on minimal gradients. Line (b) performs the actual Scatter SVM computation w.r.t. the active variables, resulting in new values of the $\alpha_{i}$. Line (c) updates the gradient w.r.t. the the new $\alpha_{i}$. Line (d) computes the actual objective value of the optimization problem, Eq. (15) in the main manuscript.

## Algorithm 1

1. $S^{0}=-\infty, g_{i}=0, \alpha_{i}=0, \forall i=1, \ldots, n$
2. for $t=1,2, \ldots$ and while optimality conditions are not satisfied, i.e. $\left|1-\frac{S^{t}}{S^{t-1}}\right| \geq \epsilon$
(a) Select Q variables $\alpha_{i_{1}}, \ldots, \alpha_{i_{Q}}$ based on the gradient $\mathbf{g}$ of Eq. (15) in the main manuscript, w.r.t. $\boldsymbol{\alpha}$
(b) Store $\boldsymbol{\alpha}^{\text {old }}=\boldsymbol{\alpha}$ and then update $\boldsymbol{\alpha}$ according to Eq. (15) in the main manuscript, with respect to the selected variables
(c) Update gradient $g_{i} \leftarrow g_{i}+\sum_{q=1}^{Q}\left(\alpha_{i_{q}}-\alpha_{i_{q}}^{\text {old }}\right) y_{i_{q}} \kappa\left(\mathbf{x}_{i_{q}}, \mathbf{x}_{i}\right), \forall i=1, \ldots, n$
(d) Compute the SVM objective $S^{t}=\sum_{i} y_{i} \alpha_{i}-\frac{1}{2} \sum_{i} y_{i} g_{m, i} \alpha_{i}$
3. end for

## References

1. Fan RE, Chen PH, Lin CJ (2005) Working Set Selection Using the Second Order Information for Training SVM. Journal of Machine Learning Research 6: 1889-1918.
