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Appendix S2: Shogun Implementation and Algorithm

To describe the with-bias algorithm, we start from the 2-class ν-formulation as stated in Eq. (28) in [1]
and repeated here

inf
α′

1

2
α′
>Kα′

s.t y>α′ = 0, α′
>
1 = ν, 0 ≤ α′ ≤ 1

N
1.

We first notice that the two equality constraints can be expressed by class-wise total weight mass condi-
tions: α′1

>
1 = α′−1

>
1 = ν/2. Due to these equality constraints, reasonable subproblems require yi = yj ;

otherwise, neither α′i nor α′j could be changed. Consequently this constraint is implemented by the se-
lection strategy and a proper choice of the initial solution candiate. Note that feasible initial points also
require ν ≤ C ·Nmin/N . To recover the problem in Eq. (15) in the main manuscript, we need to perform
a variable transformation α′ 7→ α

µ·N combined with the choice ν = C/(µ ·N).

For 2-class problems, LIBSVM’s working set selection strategy for ν-SVMs (cf. WSS 5 in [1]) traverses
the active set twice and thus requires an effort of O(2N + 2T ), where T is the time to compute a kernel
row. A straightforward generalization traverses the active set for each of the C classes leading to an effort
of O(CN +CT ) which is what we used throughout experiments. However, when ordering examples, such
that yi ≤ yj for i < j and by creating C arrays to hold the maximum class-wise gradient etc. the
computational complexity can be further reduced to O(C +N + CT ).

We now describe our without-bias algorithm. We now face the problem that due to the lack of a bias
there is no sum-to-one constraint on the αi’s anymore in the dual optimization problem, Eq. (15) in the
main manuscript. Therefore the line search performed by SMO cannot be solved analytically anymore.
As a remedy we implemented a without-bias solver based on SVMlight, which basically can deal with
any quadratic programm. The algorithm is described in Algorithm 1. We thereby employ the notation
K = κ(xi,xj)

n
i,j=1 for the block kernel matrix as defined in Eq. (7) in the main manuscript.

The algorithm has as input an accuracy parameter ε (in our experiments ε = 0.001 was chosen) and
an active set size Q (Q = 40 was chosen). The main FOR loop (Lines 2-3) iterates until the stopping
criterion (duality gap less than ε) is fulfilled. Line (a) computes the set of Q active variables based on
minimal gradients. Line (b) performs the actual Scatter SVM computation w.r.t. the active variables,
resulting in new values of the αi. Line (c) updates the gradient w.r.t. the the new αi. Line (d) computes
the actual objective value of the optimization problem, Eq. (15) in the main manuscript.

Algorithm 1

1. S0 = −∞, gi = 0, αi = 0, ∀i = 1, ..., n

2. for t = 1, 2, . . . and while optimality conditions are not satisfied, i.e. |1− St

St−1 | ≥ ε

(a) Select Q variables αi1 , . . . , αiQ based on the gradient g of Eq. (15) in the main manuscript,
w.r.t. α

(b) Store αold = α and then update α according to Eq. (15) in the main manuscript, with respect
to the selected variables

(c) Update gradient gi ← gi +
∑Q
q=1(αiq − αoldiq )yiqκ(xiq ,xi), ∀ i = 1, . . . , n

(d) Compute the SVM objective St =
∑
i yiαi −

1
2

∑
i yigm,iαi

3. end for
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