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Appendix S1: Primal Optimization Problem and Dualization

The function s(f,x, y) provides a comparative measure between the scoring function fy(x) and fc6=y(x)
as input to the loss function, commonly defined in the literature as

s(f,x, y) = fy(x)− argmaxc6=y fc(x). (1)

Because of the reference to the maximum of the scoring functions fc6=y(x), a large number of constraints
is introduced into the optimization problem. Much research has been aimed at solving Eq. (1) more
efficiently, e.g. based on decomposition into smaller subproblems [1], interleaving column generation [2]
or bundle methods [3], to name a few. But the limiting factor that the max represents, still remains.

As a remedy to this issue, we propose as a different and novel requirement that a hypothesis should
score better than an average hypothesis, that is

s(f,x, y) = fy(x)− 1

C

C∑
c=1

fc(x).

For upcoming derivations, we focus on affine-linear models of the form

fc(x) = w>c ψ(x) + bc. (2)

As discussed earlier, the bias parameter bc may be removed in the derivations, which is a mild restric-
tion for the high dimensional space H we consider. For the time being including the bias, the average
hypothesis thus becomes f̄(x) = w̄>x + b̄ and

s(f,x, y) = (wy − w̄)>ψ(x) + by − b̄, (3)

where w̄ = 1
C

∑C
c=1 wc and b̄ = 1

C

∑C
c=1 bc. Each hyperplane wc − w̄, c = 1, . . . , C, is associated with a

margin ρ. The following quadratic regularizer aims to penalize the norms of these hyperplanes while at
the same time maximizing the margins

Ω(f) =
1

2

∑
c

‖wc − w̄‖2 − Cρ. (4)

The regularized risk thus becomes

1

2

C∑
c=1

||wc − w̄||2 − Cρ+ µ
∑
i

l
[
(wyi − w̄)>ψ(xi) + byi − b̄

]
.

Expanding the loss terms into slack variables leads to the primal optimization problem

min
wc,w,b,ρ,t

1
2

∑
c ||wc − w̄||2 − Cρ+ µ

∑
i l(ti)

s.t. 〈wyi − w̄, ψ(xi)〉+ byi ≥ ρ− ti, ∀i
w̄ = 1

C

∑C
c=1 wc

b̄ = 1
C

∑C
c=1 bc = 0.

(5)

The condition b̄ = 0 is necessary in order to obtain the primal of the binary µ-SVM as a special case of
Eq. (5) and to avoid the trivial solution wc = w̄ = 0 with bc = ρ→∞.

The optimization problem Eq. (5) has an interesting interpretation. The constraint may be written
as

w>yiψ(xi) + byi ≥ w̄>ψ(xi) + ρ− ti.

Hence, we are learning for each class label a hyperplane function fyi(x) = w>yiψ(xi) + byi that allows for
scores better than the average by a margin. This is illustrated in Fig. 5 in the main manuscript.
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Dualization

Optimization is often considerably easier in the dual space. As it will turn out, we can derive the
dual problem of Eq. (5) without knowing the loss function l, instead it is sufficient to work with the
Fenchel-Legendre dual l∗(x) = supt xt − l(t) (e.g. cf. [4, 5]). Applying Lagrange’s theorem incorporates
the constraints into the objective by introducing non-negative Lagrangian multipliers α,β, γ,

L =
1

2

∑
c

||wc − w̄||2 − Cρ+ µ
∑
i

l(ti)

−
∑
i

αi (〈wyi − w̄, ψ(xi)〉+ byi − ρ− ti)

+

〈
β,

1

C

∑
c

wc − w̄

〉
+ γ

∑
c

bc.

Setting the partial derivatives of L wrt. the dual variables to zero gives the following optimality conditions,

∀c : wc − w̄ =
∑
i:yi=c

αiψ(xi)−
1

C
β ; 1>αc = 1 ,

where α =
(
α>1 , ...,α

>
C

)> ∈ Rn is equipped with a block structure and where α>c 1 =
∑
i:yi=c

αi. Note
that the total number of variables in α is thus n. Resubstituting into the Lagrangian and subsequently
solving for ∂L

∂β = 0 leads to

∀c : wc =
∑
i:yi=c

αiψ(xi) (6)

w̄ =
1

C

∑
i

αiψ(xi); β =
∑
i

αixi.

By the latter equations the Lagrangian saddle point problem can be expressed as

sup
α

inf
t
− 1

2
α>Kα + µ

∑
i

(l(ti) + αiti) , (7)

α : α>1 = C, α>c 1 = 1, c = 1, . . . , C (if bias) where K is given by Eq. (7) in the main manuscript.
Inserting the notion of a Fenchel-Legendre dual function we can completely remove the dependency on
the primal variables in Eq. (7), and obtain the generalized dual problem

sup
α
− 1

2
α>Kα− µ

∑
i

l∗(−µ−1αi), (8)

α : α>1 = C, α>c 1 = 1, c = 1, . . . , C (if bias) where l∗ is the Fenchel-Legendre conjugate function, which
we subsequently denote as dual loss of l.
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