SUPPORTING INFORMATION
A Small Molecule Agonist of EphA2 Receptor Tyrosine Kinase Inhibits Tumor Cell Migration in vitro and Prostate Cancer Metastasis in vivo
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SUPPORTING METHODS
NMR experiments for relaxation data acquirement 

 15N T1, T1ρ relaxation times, {1H}-15N steady state NOE intensities were collected on an 800 MHz Bruker Avance spectrometer equipped with both an actively shielded cryoprobe and pulse field gradient units [1], [2]. Relaxation times T1 were determined by collecting 8 points with delays of 10, 280, 700, 1000, 1100, 1250, and 1400 ms using a recycle delay of 1 s. Relaxation times T1ρ were measured by collecting seven points with delays of 1, 10, 20, 30, 40, 45, and 52 ms using a spin-lock power of 1.6 kHz, a 2.5-s recycle delay. {1H}-15N steady-state NOEs were obtained by recording spectra with and without 1H presaturation of a duration of 3 s plus a relaxation delay of 6 s at 800 MHz. 
Relaxation times were fitted as single exponential decays to peak height data. Spin-spin relaxation time T2 was calculated from T1ρ and T1 according to equation:
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Where θ=atan(Δω/ω1) and Δω, ω1 are the resonance offset and spin-lock field strength, respectively [1] . Due to the overlap or/and weak intensity of many resonance peaks resulting from the relatively-large size and presence of many exposed loop residues, 127 and 122 out of 175 non-Proline peaks are appreciable for the quantitative analysis in the free state and in complex with doxazosin, respectively.
Model-free analysis
NMR relaxation data were analyzed by “Model-Free” formulism with protein dynamics software suites [3]. Briefly, relaxation of protonated heteronuclei is dominated by the dipolar interaction with the directly attached 1H spin and by the chemical shift anisotropy mechanism [4].  Relaxation parameters are given by:
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In which [image: image7.png]d = pohyyyy <7ey >/8m°



, [image: image9.png]c = wyAc/\3



, [image: image11.png]


 is the permeability of free space; h is Planck’s constant; [image: image13.png]Yz Va



 are the gyromagnetic ratios of 1H and the X spin (X=13C or 15N) respectively; [image: image15.png]Vs



 is the X-H bond length; [image: image17.png]
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 are the Larmor frequencies of 1H and X spins, respectively; and Δσ is the chemical shift anisotropy of the X spin.

The Model-Free formalism, as previously established [5] and further extended [6], determines the amplitudes and time scales of the intramolecular motions by modeling the spectral density function, J(ω), as
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 is the isotropic rotational correlation time of the molecule, [image: image27.png]


 is the effective correlation time for internal motions, [image: image29.png]25
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 is the square of the generalized order parameter characterizing the amplitude of the internal motions, and [image: image31.png]
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 are the squares of the order parameters for the internal motions on the fast and slow time scales, respectively. Generalized order parameters reflect motions on the ns-ps time scale, with values ranging from zero for isotropic internal motions to unity for completely restricted motion in a molecular reference frame. 

In order to allow for diverse protein dynamics, several forms of the spectral density function, based on various models of the local motion [7], were utilized, which include the original Lipari-Szabo approach, assuming fast local motion characterized by the parameters S2 and τloc; extended model-free treatment, including both fast ([image: image35.png]Stast +Trast
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) reorientations for the NH bond ([image: image39.png]Trast < Tatow < Tc



); and could also allow for slow, milli- to microsecond dynamics resulting in a conformational exchange contribution, Rex, to the linewidth. Here, analysis of relaxation data was performed by software DYNAMICS [3], [8].  

The overall rotational diffusion tensors as well as total correlation time (τc) of the EphA4 LBD in the free state and complex with doxazosin were determined by ROTDIF [3], [9]. Isotropic, axially-symmetric and fully anisotropic models for the overall motion were used and then compared. According to the illustration of ROTDIF, fully anisotropic model was finally selected because of smallest Ch2/df value. 
Chemotactic Cell Migration Assay

     Chemotactic cell migration assay was performed as described previously [10].  Briefly, both sides of a Transwell insert were coated with 10 µg/ml rat tail Collagen I overnight at 4o C.  Seventy thousands of cells were placed into the upper chamber and serum-free medium containing both 15 ng/ml hepatocyte growth factor (HGF) and doxazosin at indicated concentrations were added to the lower chamber.  Cells were allowed to migrate for 5 hours.  At the end of migration, cells were fixed with 4% paraformaldehyde and stained with 0.5% crystal violet.  Cells that have migrated to the bottom of the Transwell insert were counted from 6 random fields.  
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