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1. Stochastic model of interaction with the task 
 
We modelled the rate of interaction of option-type k (flap=1, tube=2), on box l (left=1, 
right=2) for individual i in group j at time t in session s as: 
 
λijkls (t) = exp µk + Iij( )+ωVijks (t)+Tijkls (t)( ) pijs fijs (t)
i =1,2,...,N j

j =1,2,...,G
k =1,2
l =1,2
s =1,2,...,Sj
ω ≥ 0

,      1 

 
where G=9 is the number of groups, N j  is the number of individuals in group j, Sj  is the 
number of experimental sessions for group j, µk  is the baseline rate of interaction for option 
k, Iij  is a linear function of variables influencing i’s baseline rate of interaction with the task 
(see below), Vijks (t)  is i’s association of option k with reward, which is a function of past 
asocial and social learning (see below), 

€ 

ω is a parameter determining the relative influence 
of learning, Tijkls (t)  is a function describing transient social effects on i’s rate of interaction 
with option k, on box l at time t during session s (see below), pijs  indicates whether i was 
present (1) or absent (0) for session s, and fijs (t)  whether i was potentially free to interact 
with the task (1) or whether it was already engaged in a bout of manipulation with a flap or 
tube (0)1.  
 
 
Individual-level variables 
 
We considered a number of categorical variables: sex, age category: pup, juvenile, sub-adult 
and adult, with adults split further into subordinate and dominant individuals. The effects of 
these variables on individual i in j’s, baseline rate of interaction were modelled as follows: 
 
Iij = κmalemaleij +κ pup pupij +κ subadsubadij +κ juv juvij +κ domdomij +ηij +ν j
ηij ~ N 0,τ ind( )
ν j ~ N 0,τ group( )

,   2 

                                                
1 pijs  and fijs (t)  are omitted from the overview of the model in the main text for clarity. 



 
where 

€ 

maleij ,

€ 

pupij ,

€ 

juvij ,

€ 

subadij  and 

€ 

domij  are indicator variables which take the value 1 if 
individual i in group j is male, a pup,  a juvenile, a sub-adult or a dominant individual 
respectively, and 0 otherwise. 

€ 

κ  terms are fitted parameters determining the effects of each of 
these variables. Thus rates for each category are determined relative to a subordinate adult 
female. 

€ 

ηij  is a random effect controlling for within individual correlation not accounted for 
by the other variables in 

€ 

Iij , and 

€ 

ν j  is a random effect controlling for correlation between 
individuals in the same group. 
 
 



Asocial Learning and Direct Social Learning 
 
Learning in the model was based on the established Rescorla-Wagner learning rule, where a 
rewarded interaction with option k by individual i in group j, increments its association with 
that option as follows: 
 
ΔVijks =α 1−Vijks( )
α ≥ 0

,          3 

 
where 

€ 

α  is a parameter controlling how quickly the maximum association is attained. This 
can be approximated as follows: 
 

€ 

Vijks(t) =1− exp −αRijks(t)( ) ,         4 
 
where 

€ 

Rijks(t) is the number of times i has been rewarded for interacting with option k prior 
to time t in session s and all previous sessions. This can be extended to include direct social 
learning as follows: 
 

€ 

Vijks(t) =1− exp −αRijks(t) − sOijks(t)( )
α,s ≥ 0

,        5 

 
where 

€ 

Oijks(t)  is the number of observations by i of interactions with option k prior to time t 
in session s and in all previous sessions and s controls the strength the social learning in a 
manner analogous to 

€ 

α . This means that inferences regarding s assess the evidence that 
observation of another individual solving the task exerts a permanent influence on the 
observer’s future rate of interaction with the flap and tube, as oppose to a transient effect (see 
below). We further generalised learning to investigate the conditions under which direct 
social learning occurred, by distinguishing different types of observation events, and allowing 
the rate of social learning to vary between them, i.e. 
 
Vijks (t) =1− exp −αRijks (t)− sOijks (t)( )
where

s = sAll sAllR sInR sInNR sR sNR( )
Oijks (t) = OAll,ijks (t) OAllR,ijks (t) OInR,ijks (t) OInNR,ijks (t) OR,ijks (t) ONR,ijks (t)( )

T

  6 

 
Here the subscripts All and AllR refer to the observation of manipulations and rewarded 
manipulations under the assumption that all individuals present during a session saw all 
manipulations by others in that session2. In contrast, subscripts InR, InNR, R and NR refer to 
cases where the observer was recorded as looking at an individual who was manipulating the 
task, with InR indicating the observer saw the manipulator both get into the box and obtain 
food, InNR indicates that the observer saw the manipulator get into the box, but not obtain 
food, R indicated the observer obtain food, but not get into the box, and NR indicates a 
                                                
2 We consider this to be unrealistic, however, if we can show that a putative social learning 
effect is conditional on apparent observation, it adds considerable support to the evidence. 



manipulation was observed, but the observer saw neither box entry or the conspecific gaining 
food. For example, 

€ 

OInNR ,ijks (t)  refers to the number of times i was recorded as observing 
another individual getting into the box, but not recorded as observing it obtaining food3, and 

€ 

sInNR  is a parameter determining the strength of the learning resulting from each of these 
observations. By testing evidence that each component of s is different to zero and which 
components are different from other, we can infer what conditions were necessary for social 
learning to occur, and under which conditions it is strongest. 
 
We found only strong evidence that 

€ 

sInR  and 

€ 

sInNR  were different to zero, and that there was 
little evidence of a difference between them (see Model Selection below). We therefore 
simplified the model to that given in Eqn 6, with 

€ 

Oijks ( t) = OInR ,ijks (t) + OInNR ,ijks (t). We then 
added in a term to assess the extent to which social learning generalised between the two 
options: 
 

€ 

Vij1s(t) =1− exp −αRij 1s( t) − sOij1s(t) − scross Oij 2s(t)( )
Vij 2s(t) =1− exp −αRij 2 s(t) − sOij 2s(t) − scross Oij 1s(t)( )

,     7 

  
where 

€ 

scross  is the permanent effect observation of an individual entering the box through the 
flap has on the observer’s later interactions with the tube, and vice versa. If 

€ 

s > scross , this 
indicates that direct social learning distinguishes between the two options, whereas if 

€ 

s = scross  
it indicates that direct social learning cannot distinguish the two options, perhaps resulting 
only in a generalised tendency to interact with the box. 
 
 
Transient Social Effects 
 
We define transient social effects as follows: 
 
1. General Effect (GE): observation of another individual manipulating option k on box l 

results in a transient increase in the rate of interaction with both options on both boxes. 
2. Stimulus enhancement (SE): observation of another individual manipulating option k on 

box l results in a transient increase in the rate of interaction with option k on both boxes. 
3. Box-level local enhancement (BLE): observation of another individual manipulating 

option k on box l results in a transient increase in the rate of interaction with both options 
on box l. 

4. Specific local enhancement (SLE): observation of another individual manipulating option 
k on box l results in a transient increase in the rate of interaction with option k on box l. 

 
Any combination of these effects could be occurring, and in principle, they could also be 
negative (cause a decrease in rate of manipulation). We estimated these in the model by 
modelling a transient increase in the rate at which an observer manipulated a) the same option 
(on the same box); b) the different option-type on the same box; c) the same option-type on 
the different box; and d) the different option-type on the different box. We modelled these 

                                                
3 

€ 

OInR ,ijks (t) ,

€ 

OInNR ,ijks (t) ,

€ 

OR ,ijks (t) and 

€ 

ONR ,ijks (t) were incremented at the end of the relevant 
observation bout, whereas 

€ 

OAll ,ijks (t) and 

€ 

OAllR ,ijks ( t)  were incremented at the end of the 
relevant bout of manipulation. 



effects by taking 

€ 

Tijkls (t)  to be a function of the time since the times since another individual 
had last interacted with each option at each box within that session. We assumed that each of 
these effects would be strongest while a conspecific was interacting with the option in 
question, and fade away to baseline levels as time went on. We thus modelled each as 
follows: 
 
Tijkls (t) =θDODB exp −βxijvws (t)( )
+θSODB exp −βxijkws (t)( )
+θDOSB exp −βxijvls (t)( )
+θSOSB exp −βxijkls (t)( )

.        8 

 
v denotes the alternative option-type to k and w the alternative box to l.

€ 

xijkls ( t) is the time 
since the last observation of a manipulation by individual i in group j, during session s of 
option k on box l, excluding manipulations by i, with 

€ 

xijkls (0) = ∞. θDODB is the effect on the 
rate of interaction with the different option-type at the different box, etc. 

€ 

θ
E
≥ 0gives the 

strength of effect E, and 

€ 

β ≥ 0 is the rate at which transient social effects die away, with 

€ 

H = ln(2) /β  giving the half-life of the effects. An exponential model seems the natural 
choice to model an effect that decays to baseline levels as time goes on. This corresponds to a 
model in which an observer moves into a latent (unobserved) state in which its rate of 
interaction is raised by 

€ 

θ
E

, and which it leaves at constant rate 

€ 

β . Alternatively, this function 
could be seen as modelling the priming of neural units responsible for task interaction, which 
fades away over time according to exponential decay. An exponential model also appears to 
be of an appropriate functional form for the data (see Fig S1). 
 

 



 
Figure S2. Plot giving an unconstrained estimate of the shape of the transient function for the 
specific local enhancement effect. Related to Figure 2. This was computed by i) summing, 
across all individuals, the number of bout initiations within a given time period of 
observation of a conspecific at that same option; ii) summing, across individuals and options, 
the total time for which each individual was within a given time period of observation of a 
conspecific at each option: the ‘time available’, iii) estimating the rate for each time period 
by dividing the bouts initiated by the time available. The width of each interval was chosen 
such that it contained a minimum of 10,000s of time available, with the exception of the final 
interval, 1210+ s (5029s available time). The dashed line gives the rate before an individual 
had observed another individual interacting with a given option in that session (886 
initiations, 5.4e+06 s available time), taken in the model as infinity. 
 
 
 
The transient effects described above were quantified by obtaining the relevant contrasts: 
θGE =θDODB  
θSE =θSODB −θDODB  
θBLE =θDOSB −θDODB  
θSLE =θSOSB −θBLE −θSE =θSOSB −θDOSB −θSODB + 2θDODB .     9 
 
The evidence for each (positive) effect is the posterior probability that the relevant contrast is 
>0. The exception is θGE , which is constrained to be >0 and was treated as a baseline against 
which to detect more specific effects. During model selection were found little evidence for 



stimulus enhancement, so constrained θSODB =θDODB , i.e. θSE = 0 , before including interaction 
terms (see below). 
 
Interactions with Individual-Level Variables 
 
The model was expanded to test for differences between different classes of individual in 
social and asocial learning rates and the strength of transient social effects. This was done 
one effect at a time by replacing the relevant parameter P with: 
 
!P exp(Dij )

where
Dij = γP,malemaleij +γ P,pup pupij + γP,subadsubadij +γ P, juv juvij +γP ,domdomij + ς P,ij
ς P ,ij ~ N 0,τ P( )

.   10 

 
In each case the baseline is a female subordinate adult. Here ς ij  is a random effect allowing 
for individual variation in the parameter P that is not accounted for by the included variables. 
Without this, we would not take into account sampling error at the level of individuals when 
estimating the difference between classes. For example, we might happen to have sampled 
juveniles and sub-adults that are strongly affected by SLE. The random effect takes into 
account this uncertainty.  
 
Where there appeared to be differences between some age categories but others, we collapsed 
age categories as appropriate, e.g. including a single effect for juveniles and sub-adults 
γ juvsub = γ subad = γ juv . For the final model, we included any interaction terms for which the 90% 
central interval did not include zero, and the associated random effects. Where there were no 
such interactions, we retained the original parameter P in the final model. In the final model 
we back-transformed the effect for each class of individual, e.g. for the SLE effect for 
juveniles/sub-adults: 
 
θSLE, juvsub =θSLE exp(γ juvsub(subadij + juvij ))  
 
This gives the median effect for an individual of the relevant class, since the random effect is 
set to zero. 
 



 
Derivation of the Log-Likelihood 
 
For each session for each group, the data consists of a series of 

€ 

E js  events, which consist of 
the onsets and offsets of bouts of interacting with a task or observing another individual 
interacting with the task. This splits each session into 

€ 

E js+1 time periods. Each individual 
either concluded a time period by initiating a bout of interaction with a flap or tube, or it did 
not. The likelihood for individual i for time period z, starting at time 

€ 

t
z
, and concluding at 

time tz+1  with i interacting with option k on box l is therefore: 
 

€ 

L = p( i interacts with option k at box l at 

€ 

t
z+1) + p(i does not interact with any other options 

during period z) 
 
And for an individual u who did not interact with any task: 
 
L= p(u does not interact with any options during period z) 
 
Therefore to calculate the likelihood of the data for a given set of parameters, we need the pdf 
and cdf for the time to interact with an option k at box l from an arbitrary time, 

€ 

t
start

, for 
which 

€ 

xijkls ( tstart ) and 

€ 

Vijks ( tstart )  are known for all k and l. Since by definition there are no 
manipulation onset or offset events during period z, we know that

€ 

Vijks ( t) = Vijks ( tstart ) for 

€ 

t
start

≥ t . Since there are also no onsets or offsets of bouts of observation, we also know that 
any individual observing option k at box l immediately after event z will continue to do so for 
the length of period z, for whom the transient effects corresponding to that observation will 
remain constant. For such individuals, we only have to increment the rate of manipulation by 
the appropriate transient effect strengths (

€ 

θ
E

): to simplify the derivation we will ignore these 
cases for now and add them in later. For all other individuals, the transient effects will decay 
exponentially to baseline levels meaning that 

€ 

xijkls ( tstart + t) = x ijkls (tstart ) + t − t start . This also 
stands for individuals who have not observed a manipulation on option k on box l, 
since

€ 

xijkls(tstart + t) = xijkls(tstart ) =∞. We can calculate the required cdf using the following 
relationship from survival analysis between a hazard function, 

€ 

λ(t), and the corresponding 
cdf, F(t), and pdf f(t)4: 
 

€ 

λ(t) =
f (t)

1− F(t)

where

f (t) = ′ F (t)

.          11 

 
In our case, the hazard function is 

€ 

λijkls(t). From Eqn. 11 we get: 
 

                                                
4 For clarity here we assume 

€ 

pijs =1 and 

€ 

fijs(t) =1, i.e. that i is present and free to act, and 
bring these indicator variables into the likelihood function later. 



€ 

F(t) =1− exp − λijkls(t)dt
tstart

t

∫
 

 
  

 

 
  

F(t) = 1− exp −(t − tstart ) exp µk + Iij( ) +ωVijks(tstart )( ) − Tijkls(t)
tstart

t

∫
 

 
  

 

 
  

 

 
 
 

 

 
 
 

.    12 

 
Evaluating the integral, we get: 

Tijkls (t)
tstart

t

∫ =θDODB exp −β xijkws (tstart )+ t − tstart( )( )dt
tstart

t

∫

+θSODB exp −β xijkws (tstart )+ t − tstart( )( )dt
tstart

t

∫

+θDOSB exp −β xijvls (tstart )+ t − tstart( )( )du
tstart

t

∫

+θSOSB exp −β xijkls (tstart )+ t − tstart( )( )dt
tstart

t

∫

 

Tijkls (t)
tstart

t

∫ = −θDODB
exp −β xijvws (tstart )+ t − tstart( )( )

β
−
exp −β xijvws (tstart )( )( )

β

#

$

%
%

&

'

(
(

−θSODB
exp −β xijkws (tstart )+ t − tstart( )( )

β
−
exp −β xijkws (tstart )( )( )

β

#

$

%
%

&

'

(
(

−θDOSB
exp −β xijvls (tstart )+ t − tstart( )( )

β
−
exp −β xijvls (tstart )( )( )

β

#

$

%
%

&

'

(
(

−θSOSB exp −β xijkls (tstart )+ t − tstart( )( )− exp −β xijkls (tstart )( )( )( )
= −

1
β
Tijkls (t)−Tijkls (tstart )( )

 

 
which, substituting into Eqn. 12, gives 
 

€ 

F(t) = 1− exp −(t − tstart ) exp µk + Iij( ) +ωVijks(tstart )( ) +
1

β
Tijkls(t) −Tijkls(tstart )( )

 

 
 

 

 
 

 

 
 

 

 
 ,  13a 

 
and differentiating to find the pdf: 
 



€ 

f (t) = ′ F (t) = −

−exp µk + Iij( ) −ωVijks(tstart )

+
1

β
Tijkls

′(t)
 
 
  

 
 

 

 

 
 
 

 

 

 
 
 
exp

−(t − tstart ) exp µk + Iij( ) +ωVijks(tstart )( )

+
1

β
Tijkls(t) −Tijkls(tstart )( )

 

 

 
 
 

 

 

 
 
 

f (t) =
exp µk + Iij( ) +ωVijks(tstart )

+Tijkls(t)

 

 
 
 

 

 
 
 exp

−(t − tstart ) exp µk + Iij( ) +ωVijks(tstart )( )

+
1

β
Tijkls(t) −Tijkls(tstart )( )

 

 

 
 
 

 

 

 
 
 

 

13b 

 
Since: 
!Tijkls (t) = −βθDODB exp −β xijvws (tstart )+ t − tstart( )( )

−βθSODB exp −β xijkws (tstart )+ t − tstart( )( )
−βθDOSB exp −β xijvws (tstart )+ t − tstart( )( )
−βθSOSB exp −β xijkls (tstart )+ t − tstart( )( )
!Tijkls (t) = −βTijkls (t)

 

 
The pdf and cdf can be modified to include individuals who are engaged in an observation 
during period z (see above) as follows: 

€ 

F(t) = 1− exp

−(t − tstart ) exp µk + Iij( ) + Cijkls tstart( ) +ωVijks(tstart )( )

+
1

β
Tijkls(t) −Tijkls(tstart )( )

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 
     14a

 

where 

€ 

Cijkls t( ) is the effect of any current observations, given by: 
Cijkls (t) =θDODBuijvws (t)
+θSODBuijkws (t)
+θDOSBuijvls (t)
+θSOSBuijkls (t)

 

 
where

  
€ 

uijkls(t)  is an indicator variable that takes the value 1 if individual i in group j was 
observing a manipulation on option k on box l during session s at time t, excluding those 
cases where the observation ended at time t. Note that the relevant parts of 

€ 

Tijkls(t)  and 

€ 

Tijkls(tstart ) cancel out in such cases, and so the transient effect for current observations is not 
counted twice. The pdf now becomes: 

€ 

f (t) = exp µk + Iij( ) +ωVijks(tstart ) + Tijkls(t)( )exp
−(t − tstart ) exp µk + Iij( ) + Cijkls tstart( ) +ωVijks(tstart )( )

+
1

β
Tijkls(t) −Tijkls(tstart )( )

 

 

 
 
 

 

 

 
 
 

 14b 

 
This means the log-Likelihood for the data is: 
 

€ 

log(Ltotal ) = pijs f ijs(t) log(Lijsz )( )
i=1

N j

∑
z=1

E js +1

∑
s=1

S j

∑
j=1

G

∑ ,       15 

 



(summing across all groups, sessions, events and individuals) where, 
 

  

€ 

log(Lijsz) = yijklsz log exp µk + Iij( ) +ωVijks(t js(z−1)) + Tijkls(t jsz)( )
k=1

2

∑
l=1

2

∑

+

−(t jsz − tz−1) exp µk + Iij( ) + Cijkls t(z−1)( ) +ωVijks(t js(z−1))( )

+
1

β
Tijkls(t jsz ) −

 
T ijkls(t js(z−1))( )

 

 

 
 
 

 

 

 
 
 k=1

2

∑
l=1

2

∑ ,    16 

 
where 

€ 

yijklsz  is an indicator variable which takes the value 1 if individual i in group j during 
session s concluded the period z by initiating a bout of manipulation of option k on box l; all 

€ 

t js0 = 0; 

€ 

t jsE js
is the time session s concluded for group j; 

€ 

t jsz is the time of the zth event in 
session s for group j for 

€ 

0 < z < E js.   

€ 

 
T ijkls(t js(z−1))  gives the transient effect evaluated 

immediately after the (z-1)th event and 

€ 

Tijkls(t jsz)  gives the transient effect evaluated 
immediately prior to the zth event.5 
 
 

                                                
5 Some computational difficulties were encountered when 

€ 

βwas close to zero: therefore 
when 

€ 

βwas equal to zero to the accuracy used by WinBUGS we used the likelihood function 

  

€ 

log(Lijsz) = yijklsz log exp µk + Iij( ) +ωVijks(t js(z−1)) + Tijkls(t jsz)( )
k=1

2

∑
l=1

2

∑

+ −(t jsz − tz−1) exp µk + Iij( ) +
 
T ijkls(t js(z−1)) +ωVijks(t js(z−1))( )( )

k=1

2

∑
l=1

2

∑
, 

which corresponds to a transient effect that operates at full strength for the remainder of the 
session.

 
 



Markov Chain Monte Carlo (MCMC) 
 
We used MCMC to generate samples from the posterior distribution for the parameters in the 
model, using WinBUGS 1.4 [35], which we analysed using the CODA package [36] in the R 
statstical environment [37]. This approach was chosen in preference to maximum likelihood, 
since it is relatively easy to include random effects and the posterior distribution for each 
parameter is automatically averaged over uncertainty in the other parameters in the model 
[41]. We used the “zeroes-ones trick” to specify the likelihood for the model [42] (p.276). 
 
For each model, we ran 3 chains with different starting values. We ran and discarded a burn 
in period of at least 4000 iterations, using the Gelman Rubin statistic and time series of the 
model parameter values to check for convergence. We ran at least 33,334 further iterations 
for each chain to ensure we had an effective posterior sample of 1000 for all parameters after 
allowing for autocorrelations. For estimates of parameters and contrasts we used the median 
of the posterior sample, which minimises the absolute error and is invariant to monotonic 
transformations [43]. For 95% credible intervals we use highest posterior density (HPD) 
intervals. 
 
Prior distributions were chosen to be low-information priors [42]. We used a non-informative 
prior when these were not improper distributions, i.e. for parameters bounded between 0 and 
1: s and 

€ 

α  parameters, we used prior ~U(0, 1). For variance parameters, 

€ 

τ
ind

 and 

€ 

τ group , we 
used a gamma distribution, with shape=1 and rate=0.1. For other parameters constrained to 
be greater than zero, we set log(

€ 

ω )~N(0, 0.001), log(

€ 

β )~N(0, 0.01) and log(

€ 

θ
E

)~N(0,0.001) 
for all E, and for unbounded parameters, 

€ 

µ,

€ 

κ  and 

€ 

γ  parameters, we set the prior ~N(0, 
0.001). These were selected to be as uninformative as possible without causing numerical 
errors. 
 
 
Model selection procedure 
 
In general, for any parameters that were not bound above zero, or contrast between 
parameters, we examined whether their 90% central interval (5th-95th percentile) included 
zero. If it did then we excluded the parameter, or, for a contrast, constrained the relevant 
parameters to be equal. For parameters constrained to be greater than zero, such as s 
parameters, we fit an alternative model in which the parameter was constrained to zero, and 
favoured the model with the lower deviance information criterion (DIC). 
 
We initially fit a model with all individual level variables (Eqn. 2), all transient social effects 
(Eqn 8) and a single parameter s for direct social learning (Eqn. 5), with no interactions 
between individual-level variables and other variables. We dropped all individual level 
variables not significantly different to zero: here we found only 

€ 

κ
male

> 0, indicating evidence 
that males tended to have a higher baseline rate of interaction than females. 
 
We then tested for differences in the effects of direct social learning resulting from different 
classes of observation, using Eqn. 6. We found that the estimates for 

€ 

s
All

 and 

€ 

s
AllR

 were very 
small (see Fig S2) and significantly smaller than the estimates for individuals having been 
recorded as observing the event. We found no significant difference between cases where the 
observer saw a conspecific enter the box and gain a reward, and seeing it enter the box but 
not observe reward (95% central interval 

€ 

s
InR
− s

InNR
: [-0.0047,0.0041]), so we set 



€ 

s
InR

= s
InNR

= s
In

. We then found that observations of a conspecific entering the box had a 
greater effect than observations not including box entry, but including observation of a 
conspecific being rewarded (95% central interval

€ 

s
In
− s

R
: [0.00030,0.0048]). We found there 

were very few observations (twenty) where the observer neither saw a conspecific being 
rewarded or entering the box, so the effects of this class of observation could not be estimated 
with any precision. We therefore fit another model, with 

€ 

s
NR

= s
R

= s
NotIn

, and found that 
observation of an individual entering the box resulted in a greater effect than observation that 
did not include box entry (95% central interval

€ 

s
In
− s

NotIn
: [0.00029,0.0048]). We therefore 

retained only term 

€ 

s = s
In

, which gives us the model in Eqn. 5 with 

€ 

Oijks ( t) = OInR ,ijks (t) + OInNR ,ijks (t). Setting s=0 resulted in an increase in DIC, so this term was 
retained in the model. Taken together these results indicate evidence of a direct social 
learning effect that is conditional on observation of a conspecific gaining entry to the box, 
and results in a higher rate of interaction with the specific option (flap or tube) used by the 
demonstrator.  
 
 

 
 
Figure S1 Mean and 95% central interval of the posterior distribution for the direct social 
learning effect of different classes of observation. The size of each effect refers to the 
corresponding parameter in the learning rule used in the model (Eqn. 6, with constraints 
s
InR
= s

InNR
 and s

R
= s

NR
). * indicates that the 95% central interval for the contrast between 

two effects did not include zero; NS indicates that the 95% central interval for the contrast 
between two effects did include zero. Note that only the effects for “Box entry observed” 
were retained in the final model. 
 



We then tested whether the effect generalised to the option not used by the observed 
conspecific, by expanding the model as shown in Eqn. 7. We found that the 95% central 
interval for 

€ 

s − s
cross

 included zero and inclusion of 

€ 

s
cross

 in the model caused a decrease in 
DIC, indicating there is not strong evidence that the effect is option specific. In summary, 
there is evidence of direct social learning, but there is only weak evidence that this effect is 
option specific. 
 
We found evidence for a positive effect of SLE (95% central interval= [0.0021, 0.0049]) and 
BLE (95% central interval= [3.0E-4, 0.0015]), but little evidence for a positive effect of SE 
(95% central interval= [-2.2E-4, 5.0E-4]), so we dropped the latter from the model as 
described above. We then fitted alternative models on which the transient effects were 
conditional on i) observation of a conspecific gaining entry to the box, ii) observation of a 
conspecific obtaining a reward or iii) both. We also fitted a model in which the transient 
effects operated on all individuals present at an experimental session. In all cases the DIC 
was much higher (>100) than that in the original model indicating evidence that observation 
of interaction with an option was a necessary and sufficient condition for the transient social 
effects to occur. 
 
Next we tested for significant interactions of individual level variables with the rate of asocial 
learning, 

€ 

α , finding evidence only that dominant adults had a lower rate of asocial learning 
than other individuals. This indicates that dominants’ future rate of interaction with an 
option-type was less affected by a successful manipulation of that option. Next we tested for 
interactions with the rate of direct social learning, s, finding no strong evidence of any 
differences between classes of individuals. Finally, we tested for interactions with the 
transient social learning effects, i.e.

€ 

θ  parameters. We found evidence that pups, juveniles and 
sub-adults were more affected by specific local enhancement than adults (interaction with 
θSOSB ), with juvenile and sub-adults being more strongly affected than pups, but that there 
was no significant difference between juveniles and sub-adults. We also found evidence that 
the general effect was significantly weaker in juveniles and sub-adults (interaction with 
θDODB ). Taken together, these results suggest that the transient social effect is strongest and 
most spatially specific for juveniles and sub-adults, then pups, with adults being the least 
affected, and with the least spatial specificity. This leaves us with the following final model: 
 



λijkls (t) = exp µk +κmalemaleij +ηij +ν j( )+ωVijks (t)+Tijkls (t)( ) pijs fijs (t)
where

Vij1s (t) =1− exp α exp γα,dom (domij )+ςα,ij( )Rijks (t)− sOij1s (t)− scrossOij2s (t)( )
Vij2s (t) =1− exp α exp γα,dom (domij )+ςα,ij( )Rijks (t)− sOij2s (t)− scrossOij1s (t)( )
Oijks (t) =OInR,ijks (t)+OInNR,ijks (t)
and

Tijkls (t) =θDODB exp γDODB, juvsub juvij + subadij( )+ςDODB,ij( ) exp −βxijqws (t)( )
q
∑

+θDOSB exp −βxijvls (t)( )
+θSOSB exp γSODB, juvsub juvij + subadij( )+γSODB,pup pupij +ς SOSB,ij( )exp −βxijkls (t)( )
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We generated 95% credible intervals for each parameter, and, contrast (see Table S1). We 
tested again for differences in the rate of direct social learning, in the context of the final 
model, which indicated again evidence that observation of a conspecific gaining entry to the 
box was necessary for direct social learning to occur (see Fig S2). We also tested again for 
transient effects conditional on observation of a conspecific gaining entry to the box ( DIC= 
+168.2), observation of a conspecific obtaining a reward ( DIC= +137.8). We also fitted a 
model in which the transient effects operated on all individuals present at an experimental 
session ( DIC= +399.2). Taken together, these findings indicate evidence that observation of 
interaction with an option was a necessary and sufficient condition for the transient social 
effects to occur. 
 
In light of the findings of the analysis concerning the rate of solving and task abandonment 
(see below), we also tested for an effect of previous unsuccessful interactions with a specific 
option-type on the rate of interaction with the same option-type, by including this as a term in 
the linear predictor. Surprisingly, this yielded a positive effect (95% central interval= [0.063, 
0.219], which prima facie appears to contradict the principles of reinforcement learning, with 
unrewarded task manipulations causing an increase in the rate of future manipulations. 
However, an alternative explanation is that individuals who were highly motivated to interact 
with the task also accrued more unsuccessful manipulations. To distinguish between these 
explanations, we created a new variable by subtracting the mean number of previous 
unsuccessful manipulations across the diffusion, for each individual. The effects of this new 
variable are now only likely to reflect changes caused by differences in the number of 
unsuccessful attempts within each individual. These were estimated to have a negative effect 
(95% central interval= [-0.392, -0.080]) as is consistent with reinforcement learning. 
However the inclusion of the effect did not improve the model ( DIC= +1.5), so we retained 
the final model given in Eqn. 17.  
 



Causal interpretation of the model 
 
The results of the model indicate a statistical pattern that is consistent with a specific local 
enhancement effect that is stronger in juveniles, sub-adults and pups, and a direct social 
learning effect of observation. Since these patterns are based on observation rather than direct 
experimental manipulation of observational experiences, we cannot completely rule out the 
possibility that an unknown variable is influencing manipulation and observation of the task 
in a way that results in an identical statistical pattern. However, the specificity of each effect 
(spatial specificity of the transient effect and conditionality of the direct effect on observation 
of another individual gaining entry to the box) rules out most alternative explanations for the 
observed patters. Here we present further analyses that rule out what we consider to be the 
most plausible alternative explanations. 
 
One possibility is the apparent direct effect of observation is caused by individual variation in 
the time spent close to the task. Individuals who spend a lot of time close to the task are more 
likely to observe manipulations, and are more likely to interact with the task, even if the 
former does not cause the latter. The fact that individuals had to see a conspecific gain entry 
to the box for the effect to occur goes someway to weakening this alternative explanation. In 
addition, we would not expect this alternative process to result in a cumulative increase in the 
rate of interaction, as we would with direct social learning. Rather we would expect the total 
number of observations made by each individual to predict the time spent near the box, and 
consequently the rate of manipulation. Therefore, we controlled statistically for this 
possibility by including the total number of observations made by each individual (corrected 
for the number of sessions present) as an individual-level variable in 

€ 

Iij . We found that even 
with this control variable in the model, setting s=0 resulted in a large increase in DIC (+12.4), 
indicating strong evidence for directed social learning. However, setting 

€ 

s
cross

= 0  now 
resulted in a large decrease in DIC (-15.3), and the resulting model also had a lower DIC than 
the final model given above (-9.4). This suggests the apparent cross-option generalisation of 
direct social learning may be an artefact of this non-causal process. 
 
An alternative explanation for the apparent transient effect of observation is that individuals 
who happened to be close to a specific option on a specific box were both more likely to 
observe individuals interacting with it, and more likely to interact with it themselves, without 
the former causing the latter. Again, the fact that the strength of the effect differs greatly 
between classes of individuals goes some way to weakening this alternative explanation. In 
addition, if the alternative explanation is true, we would expect an observer to be more likely 
to choose the option it is closest to at the end of an observation, rather than the option it saw a 
conspecific interacting with6.  
 
We tested this alternative hypothesis by reanalysing the videos for a random two sessions for 
each group. For each observation event, we recorded, to the nearest 5cm, how close the 
observer was to the demonstrated option at the end of the observation bout, and how close it 
was to the nearest non-demonstrated option. We then recorded which option, if any, was 
chosen next by that individual in the same session and before its next observation event. This 
yielded 65 observations by 34 individuals that were followed by a choice. In 29 of these, the 
closest non-demonstrated option was closer than the demonstrated option, yet in these cases 
                                                
6 Though this might still be the result of a causal effect, if observers moved closer to the 
option being demonstrated as a result of observation, rather than being more likely to observe 
demonstrations at the option that happened to be closest. 



the demonstrated option was chosen 15 times (52%), the closest option 4 times (14%) and 
one of the other options 10 times (35%). This means that the demonstrated option was chosen 
more often than we would expect if an option was chosen at random (binomial test: expected 
proportion=0.25; p<0.001) and was chosen significantly more often than the closest option 
(binomial test: expected proportion=0.5; p<0.001). The effect is stronger if we only examine 
choices made within 60s of observation: 14/24 demonstrated; 3/24 closest; 7/24 other. 
Demonstrated versus non-demonstrated, Binomial test: expected proportion=0.25; p<0.001; 
demonstrated versus closest, binomial test: expected proportion=0.25; p<0.001. Therefore the 
data point to the fact that the demonstrated option is more likely to be chosen, even when it is 
not the closest. 
 
In conclusion, the data do not seem consistent with the alternative explanations considered 
above, and we consider causal social influences to be the most likely explanation for the 
observed statistical patterns. 
 
 
 
 

3. Modelling probability of observation 
 
For each individual, we calculated the total number of manipulation events made by other 
individuals during each session in which it was present, and the number of these that the 
individual was recorded as observing. We then fitted a generalised linear mixed model with a 
binomial error structure and logit link function, with individual and group as nested random 
effects to model the probability that an individual would observe any given manipulation 
event. We used MCMC to generate samples from the posterior distribution for the parameters 
in the model, using WinBUGS 1.4 [35].  We tested for differences in the probability of 
observation between a) males and females, and b) pups, juveniles, sub-adults, subordinate 
adults and dominant adults by examining whether the 95% central intervals for the difference 
between classes of individuals included zero. The only effect for which the 95% credible 
intervals did not include zero was that pups were more likely to observe a manipulation than 
subordinate adults. 
 
 



4. Modelling probability of successful manipulation 
 
To model the probability that an individual would be successful (i.e. obtain food) in a given 
bout of manipulation with the task we used a GLMM with a binomial error structure and logit 
link function, with nested random effects for group and individual. We allowed for a 
difference in difficulty between flap and tube and tested for between-individual differences in 
the probability of success between males and females, pups, juveniles, sub-adults, 
subordinate adults and dominant adults. We also tested for how probability of success 
depended on an individual’s prior experience. As before, we assumed that potential 
influences could be a) an individual’s own history of manipulations, i.e. the cumulative 
number of successful interactions and number of unsuccessful interactions at the option being 
manipulated; b) direct social learning: a permanent effect resulting from observation, i.e. the 
cumulative number of observed successful manipulations at each option, and c) transient 
social influence, i.e. the time since another individual last interacted with the same option at 
the same box7. The initial full model had a linear predictor, 

€ 

ψijkls : 
 

€ 

ψij1ls = µ + Bij +ηtimes+ηAL+Rij1s(t) +ηAL−Uij1s(t)

+ηNSSL Oij1s(t) +Oij2s(t)( ) +ηOSSLOij2s(t) + g(xij1ls(t))

and

ψij2ls = µ +η+ Bij +ηtimes+ηAL+Rij2s(t) +ηAL−Uij2s(t)

+ηNSSL Oij1s(t) +Oij2s(t)( ) +ηOSSLOij1s(t) + g(xij2ls(t))

where

Bij =ηmalemaleij +ηpup pupij +ηsubad subadij +η juv juvij +ηdomdomij +ηij + ν j

ηij ~ N 0,τ ind( )

ν j ~ N 0,τ group( )    
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where 

€ 

logit pijkls(t)( ) =ψ ijkls gives the probability, 

€ 

pijkls(t) ,  of individual i in group j 
succeeding in a bout of interaction with option k on box l, commencing at time t during 
session s; 

€ 

µ is the coefficient, 

€ 

η
tube

 allows for underlying differences between options; 

€ 

η
male

 
,

€ 

ηpup ,

€ 

η
subad

,

€ 

η juv  and 

€ 

η
dom

 give the effects of the individual variables; 

€ 

η
time

 models and 
controls for systematic time effects on the probability of solving, across sessions; 

€ 

η
AL+

 gives 
the effect of a previous successful interaction on a specific option, with 

€ 

Rijks(t)  giving the 
number of successful interaction with option k made by i prior to time t in session s and in 
previous sessions;  

€ 

η
AL− gives the effect of a previous unsuccessful interactions on a specific 

option, with 

€ 

Uijks(t)  giving the number of unsuccessful interactions with option k made by i 
prior to time t in session s and in previous sessions; 

€ 

η
NSSL

 gives the option non-specific effect 
of social learning, i.e. the effect observation of a successful manipulation has on the 
probability of success of either option, whereas 

€ 

η
OSSL

gives the option-specific effect of social 
learning, over and above that of the non-specific effect; 

€ 

Oijks(t)  gives the number of 
successful interactions with option k observed by i prior to time t in session s and in previous 
sessions (entry to the box observed). 
                                                
7 This particular transient effect was chosen as the most likely to be in operation in light of its 
dominant effect on the rate of interaction. 



 

€ 

g(xijkls(t))  is a function of the time since an individual last interacted with the same option on 
the same box. Initially we modelled this as a linear function but found no significant effect, 
and then as a step function: 
 

€ 

g(x ijkls (t)) =
η trans x ijkls (t) ≤ Ttrans

0 x ijkls (t) > Ttrans

 
 
 

 ,       19 

 
where 

€ 

η
trans

 is the transient effect of another individual at the option in question, and 

€ 

T
trans

 
determines how long the effect lasts. We tried a number of values for 

€ 

T
trans

, but the strongest 
effect was found for 

€ 

T
trans

=0, with 

€ 

η
trans

<0, indicating only that an individual was less likely 
to solve the task if another individual was present at the chosen option/box at the onset of 
manipulation. 
 
The model was fitted using the lmer function in the lme4 package [39] of the R statistical 
environment [37], using the Laplace approximation.  
 
Instead of using a model selection procedure to choose a best model, we used a model 
averaging approach, using AIC (Akaike’s Information Criterion) [15]. Inferences based on 
model averaging take into account our uncertainty as to which is the best model. AIC 
estimates the Kullback-Leibler (K-L) information for a model: the extent to which the 
predicted distribution for the dependent variable approximates its true distribution (lower 
values better). This allows us to calculate an Akaike weight for each model, which gives the 
likelihood the model is the actual best K-L model (that with the lowest K-L information) out 
of those considered, allowing for sampling variability. Therefore, by summing the Akaike 
weights for all models including a specific variable, we obtain the probability that that 
variable is in the best K-L model, thus quantifying the support the data give for an effect of 
that variable [15].  
 
We fitted models including every combination of fixed effects shown in Eqn. 18, and models 
with the constraints, with random effects retained in all models. This was done automatically 
using R code that fitted each model, and recorded the AIC, model coefficients and standard 
errors in each case. We also varied the conditions under which direct social learning was 
assumed to occur with i) all observations resulting in learning; ii) only observations of an 
individual being rewarded resulting in learning; iii) only observations of an individual 
gaining entry to the box resulting in learning; or iv) only observations of an individuals 
gaining entry to the box and being rewarded resulting in learning. We also considered models 
in which the effects of direct social learning were a) option specific or b) option general (see 
Eqn. 18). To evaluate the support for each model of social learning, we summed the Akaike 
weights for each of combination of i-iv and a/b as well as for models with no direct social 
learning, to calculate the support for each. Where presence versus absence of a variable is 
concerned, the total Akaike weight gives the support for its inclusion in the K-L best model 
with >50% indicating more support for than against its inclusion. Where multiple mutually 
exclusive “sub-models” are considered for a variable (see Tables S2-7) one must instead 
compare the Akaike weights for each proposed sub-model, and that for models in which the 
variable is absent. The relative size of the Akaike weights then give the relative support for 
each sub-model. 
 
 



We present model-averaged estimates of the effect of each variable for which there is 
reasonable support, conditional on its presence in the model, and Wald 95% confidence 
intervals based on the unconditional standard error, which allows for model selection 
uncertainty [15]. We present these on the scale of the linear predictor, i.e. the effect on the 
natural logarithm of the odds of success. We feel that this approach is preferable to 
calculating a p-value to quantify the strength of evidence for each effect, since a) the p value 
depends on which model is chosen, and so does not account for model uncertainty, and b) a 
large p value tells us little about the strength of evidence against the effect (whilst statistical 
power can be calculated, this has to be for a specified, usually arbitrary, effect size [44]. 
 
Contrary to expectations, there was strong support for a negative effect of the number of past 
successes at the task, and this effect was not option specific. This is surprising since we 
would expect individuals who solve the task to be more likely to do so in the future. 
Consequently we decided to investigate this further. To be sure that we were testing for a 
within-individual effect we centred the number of past successes and failures by subtracting 
the average across all bouts of interaction for the individual in question, i.e. 
 

€ 

′ R ijks(t) = Rijks(t) −µR ,ijk

′ U ijks(t) = Uijks(t) −µU ,ijk

,         20 

 
where 

€ 

µR ,ijk  is the average number of previous successes across bouts of interaction with 
option k by individual i in group j, and 

€ 

µU ,ijk  is the average number of previous unsuccessful 
interaction with option k by i in j. We also formulated another variable: 
 

€ 

SOS,ijks(t) =
1 Rijks(t) > 0

0 Rijks(t) = 0

 
 
 ,         21a

 

 
such that 

€ 

SOS,ijks(t) indicated whether an individual had previously solved the task using 
option-type k (OS denotes option-type specific), and 
 

€ 

SNS,ijs(t) =
1 Rij1s(t) + Rij2s(t) > 0

0 Rij1s(t) + Rij2s(t) = 0

 
 
 ,        21b

 

 
such that 

€ 

SNS,ijs(t)  indicated whether an individual had previously solved the task using either 
option-type (NS denotes option non-specific). We then updated Eqn. 18 as follows: 

 



€ 

ψij1ls = µ + Bij +ηtimes +ηAL +
′ R ij1s(t) +ηAL−

′ U ij1s(t)

+ηSolved (OS )SOS,ij1s(t) +ηSolved (NS )SNS,ijs(t)

+ηNSSL Oij1s(t) + Oij2s(t)( ) +ηOSSLOij1s(t) + g(xij1ls(t))

and

ψij2ls = µ +ηtube+ Bij +ηtimes +ηAL +
′ R ij2s(t) +ηAL−

′ U ij2s(t)

+ηSolved (OS )SOS,ij2s(t) +ηSolved (NS )SNS,ijs(t)

+ηNSSL Oij1s(t) + Oij2s(t)( ) +ηOSSLOij2s(t) + g(xij2ls(t))

where

Bij =ηpup pupij +ηsubad subadij +η juv juvij +ηij + ν j

ηij ~ N 0,τ ind( )

ν j ~ N 0,τ group( )  ,    22

 

 
where 

€ 

η
Solved (NS )

 gives the effect of previously having solved the task using either option-type, 
and 

€ 

η
Solved (OS )

 gives the additional effect of previously having solved the task using the same 
option-type. We dropped the non-significant effects of sex and dominance, in order to reduce 
the models to be fitted to a manageable number. We then used the used the same model 
selection procedure as before, but also fitted alternative models in which the effect of the 
number of previous manipulations was not option specific, i.e. replacing each of the terms: 

€ 

+ηAL +
′ R ij1s(t) +ηAL−

′ U ij1s(t) and 

€ 

+ηAL +
′ R ij2s(t) +ηAL−

′ U ij2s(t) 
with 

€ 

+ηAL +
′ R ij1s(t) + ′ R ij2s(t)( ) +ηAL−

′ U ij1s(t) + ′ U ij2s(t)( ) . 
 
There was strong support for models in which there was an option specific effect of having 
solved the task before (total Akaike weight= 92.1%), with little support for models in which 
there was a cross-option effect (total Akaike weight= 32.6%). The log odds of success were 
higher for those who had solved the task using that option type before (+0.23 [0.0034, 0.46]). 
However, there was strong evidence of an additional negative effect of further number of 
successes and a positive effect of the previous number of failures (see Table S4). The data 
indicate that this was more likely to be an option-general effect. These effects were estimated 
at -1.7 [-3.0, -0.44] per previous success and 0.34 [0.14,0.55] per previous failure. 
 
 Total Akaike weight (%) 
No effect 0 

 Option-specific Option-general 
Failures only 0 0 
Successes only 0.3 0.4 
Both with same effect 0.1 0.1 
Both with different effect 26.8 72.4 
 
Table S4. Relative support for different models of the effect of previous number of successes 
and/or failure on probability of success. 



 
With regards to direct social learning, there was strongest support for models in which both 
observation of box entry and reward were necessary for social learning to occur and that its 
effects were option general (see Table S5). The only other model with comparable support 
was one in which observation of reward was sufficient for social learning to occur. We 
conclude that it is highly probable direct social learning affected the probability of success, 
and that observation of reward was a necessary condition for this to occur. Furthermore, it is 
likely that observation of box entry was also a necessary condition. Conditional on the most 
supported model of social learning, but averaged across all other models considered, we 
estimate the effect per observation to be 0.30 (95% CI= [0.090,0.50]) on the log odds scale. 
 
 Total Akaike weight (%) 
No social learning 1.2 

Conditions for social learning: Option-specific Option-general 
All observations 1.3 2.4 
Observations of reward 0.7 20.4 
Observations of box entry 0.7 0.6 
Observations of both box entry and reward 4.2 68.7 
 
Table S5. Relative support for different models of the effect of direct social learning on 
probability of success. 
 
There was strong support for an effect of day (total Akaike weight= 97.5%), however, its 
effect was not estimated with great precision (-0.14 [-0.48,0.20] per day) since its effects 
varied greatly depending on which other variables were included in the model. There was 
strong support for differences between age categories (total Akaike weight= 91.9%). The 
baseline (adults) was estimated at -2.3 [-3.6, -1.0] with differences relative to adults of -0.93 
[-1.8,-0.042] for pups; -0.84 [-3.5,1.8] for juveniles; and -0.66 [-1.5,0.17] for sub-adults. 
There was not strong support for an effect of another individual’s presence at the option 
being manipulated  (total Akaike weight= 28.0%), but we cannot rule out a difference 
between option-types (total Akaike weight= 50.5%). 
 
Changes in the probability of success in a bout could logically be the result of only two 
factors: a) changes in the rate at which individuals terminate a bout of interaction 
unsuccessfully, henceforth ‘task abandonment’; or b) changes in the rate at which individual 
terminate a bout successfully, henceforth ‘rate of solving’. To investigate how each variable 
operated, we fitted a separate model of each process, using a Cox Proportional Hazards 
survival analysis model [14]. For a), the time of ‘death’ is the time since initiating a bout at 
which an individual terminates a bout without gaining a reward. Those individuals who gain 
a reward are considered to be ‘censored’, equivalent to surviving the course of a survival 
analysis. Conversely, for b) the time of ‘death’ is the time since initiating a bout at which an 
individual terminates a bout by gaining a reward. In this case, those individuals who do not 
gain a reward are ‘censored’. The models were fitted using the coxme function in the coxme 
package [40] in the R statistical environment [37]. We fitted models according to the linear 
predictor given in Eqn. 22 above, excluding the coefficient, 

€ 

µ, which is not necessary in a 
Cox Proportional Hazards model, and the dependent variable being time since the start of the 
bout of interaction. For each model we used the same model averaging procedure as that 



described above, calculating AIC using the integrated likelihood. However, here we report 
effects as the back-transformed multiplicative effects on rate. 
 
In agreement with the previous model, there was some evidence that meerkats who had 
previously solved the task using a specific option solved at a faster rate (x1.51 [1.00, 2.01]) 
when manipulating the same option type (total Akaike weight= 68.2%), but little evidence 
that this generalised to the other option type (total Akaike weight= 37.4%). There was little 
support for an effect of further manipulations, but weak evidence for a positive effect of 
previous number of unsuccessful manipulations (x1.12 [1.01, 1.25] per manipulation), which 
is more likely to have been option type specific than option type general (see Table S6). 
 
 Total Akaike weight (%) 
No effect 3.3 

 Option-specific Option-general 
Failures only 37.0 13.1 
Successes only 2.7 2.9 
Both with same effect 4.6 4.1 
Both with different effect 21.7 10.7 
 
Table S6. Relative support for different models of the effect of previous number of successes 
and/or failure on rate of solving. 
 
There was little support for models including a difference between option-types (total Akaike 
weight= 28.4%), an effect of session (total Akaike weight= 36.6%) or an effect of other 
individuals' presence at the option being manipulated (total Akaike weight= 28.7%). There 
was reasonable support for models including difference in rate of solving between age 
categories (total Akaike weight= 79.7%). These effects were estimated as (relative to adults): 
x0.68 [0.42, 1.11] for pups; x0.57 [0.34,0.97] for juveniles; and x0.78 [0.37, 1.6] for sub-
adults. 
 
There was not conclusive evidence for or against direct social learning. Models in which 
observations of both box entry and reward resulted in option-type general learning were again 
most favoured, but the level of support was only 1.34x greater than that for models with no 
direct social learning (see Table S2). We conclude that there is not strong evidence that direct 
social learning influences the rate of solving, but we cannot rule out the possibility of an 
option-type general effect. 



 
 
 Total Akaike weight (%) 
No social learning 18.2 

Conditions for social learning: Option-specific Option-general 
All observations 8.6 8.1 
Observations of reward 7.6 9.9 
Observations of box entry 7.2 8.4 
Observations of both box entry and reward 7.2 24.5 
 
Table S2. Relative support for different models of the effect of direct social learning on rate 
of solving. 
 
 
In contrast, there was strong evidence for direct social learning affecting task abandonment, 
and that this effect was option-type general and required observation of both box entry and 
reward (see Table S3). The effect was estimated at x0.84 [0.76, 0.94] per observation. 
 
 Total Akaike weight (%) 

No social learning 0.8 
Conditions for social learning: Option-specific Option-general 

All observations 0.5 1.2 
Observations of reward 0.4 3.9 
Observations of box entry 0.4 0.6 
Observations of both box entry and reward 5.9 86.3 
 
Table S3. Relative support for different models of the effect of direct social learning on rate 
of task abandonment. 
 
In agreement with the analysis of probability of success, there was strong support for an 
option-type specific effect of having solved the task previously (total Akaike weight= 91.7%) 
but equivocal support for on option-type general effect (total Akaike weight= 54.3%). The 
rate of task abandonment was lower for those who had solved the task using that option type 
before (x0.34 [0.23, 0.49]). However, there was strong evidence of an additional positive 
effect of further number of successes and a negative effect of the previous number of failures 
(see Table S7). The data indicate that this was more likely to be an option-general effect. 
These effects were estimated at x1.09 [1.04, 1.14] per previous success and x0.84 [0.74,0.96] 
per previous failure. 



 
 
 Total Akaike weight (%) 
No effect 0.1 

 Option-specific Option-general 
Failures only 0 0 
Successes only 4.3 1.4 
Both with same effect 0.5 0.7 
Both with different effect 16.5 76.4 
 
Table S7. Relative support for different models of the effect of previous number of successes 
and/or failure on rate of task abandonment. 
 
There was not strong support for differences between age categories (total Akaike weight= 
55.5%) or a effect of the presence of another individual at the same specific option (total 
Akaike weight= 32.8%). There was weak evidence of a difference between option-types 
(total Akaike weight= 79.7%), with the tube having a lower rate of abandonment than the flap 
(x0.76 [0.55, 1.06]). There was also evidence that the rate of task abandonment decreased 
over sessions (total Akaike weight= 88.4%; x0.91 [0.83,1.00] per day), which indicates a 
time effect not accounted for by the learning effects included in the model.  
 
For model diagnostics, we examined plots of residuals from a coxph model (survival package 
[45] fit with an equivalent fixed effects structure to the best model found, with individual 
included as a random effect (only a single random effect is allowed by coxph, but coxme 
does not allow extraction of residuals). We used ‘dfbeta’ residuals to assess the influence of 
each observation, which estimate the effect on each parameter of dropping the observation 
from the model. No observations had a large influence on the parameters in the final models. 
We used plots of martingale residuals against each covariate to assess linearity, which was 
found to be appropriate in each case. We checked the assumption of proportional hazards by 
using the cox.zph function to test for a correlation between the scaled Schoenfeld residuals, 
for each effect in the final model, and time. These were found to be non-significant for all 
effects on the rate of solving. However, for task abandonment, a significant positive 
correlation was found for all coefficients of the age category factor, and a negative 
correlation for the effect of the number of previous observations (direct social learning). Plots 
of the scaled Schoenfeld residuals suggested that these effects tended to become stronger as 
time (from the start of interaction) went on. Details of these model diagnostic tests can be 
found in [46]. 
 
In summary, most of the variables influencing the probability an individual will solve the task 
during a bout of interaction operate by influencing the rate at which individuals terminate a 
bout of interaction unsuccessfully. There is strong evidence for direct social learning 
influencing the probability of solving, which persists after motivational and asocial learning 
variables have been accounted for. There is not strong evidence that direct social learning 
influences the rate at which individuals solve the task, nor that its effects are specific to the 
option-type chosen to solve the task, suggesting that observers do not learn the motor pattern 
required to solve the task, through imitation or emulation. Instead the evidence suggests that 



social learning decreases the rate at which individuals abandon the task once they have 
started to interact with it. 

 
5. Modified Option Bias method 

 
The Option Bias method [19] is a statistical test for detecting whether individuals within a 
group are more likely to use the same option to solve a task than would be expected by 
chance and asocial learning alone. This is done by applying a conventional statistical test to 
test for a group-level bias that assumes manipulations by the same individual are 
uncorrelated, and using this to yield a test statistic. In this case we used a GLM with a 
binomial error structure, with the choice of tube/flap as the binary response variable, and 
group as the explanatory variable, using the LRT statistic as the test statistic. In the Option 
Bias test the null distribution is generated by randomising individuals between groups. 
However, in this case the presence of demonstrators trained to use different options in 
different groups artificially inflates the option bias effect. Therefore we modified the 
randomisation procedure so that demonstrators were constrained to remain in different 
groups. 
 

6. Comparison with Thornton & Malapert [20] 
 

Despite strong evidence that social learning influenced the meerkats in this study, it is also 
clear that no group-level traditions arose in the option-type chosen to solve the task. This is in 
contrast to a previous study [20] in which groups of meerkats could either use a flap, similar 
to the one in this study, to gain access to food in a box, or they could climb stairs to gain 
access to the food from above (henceforth, the “Flap/Stairs task”), and in which there was 
stronger evidence of group-level traditions arising through preferential adoption by observers 
of demonstrators’ techniques. The SMFM presented in this paper provides a means by which 
we can interpret why traditions arise in some cases, but not in others: here we compare the 
present study (henceforth, the “Flap/Tube task”) and the Flap/Stairs task. For the Flap/Tube 
task, we found the dominant effect was a transient local enhancement effect, which acted to 
attract observers to the specific option used by another individual. However, there was also 
evidence that this effect generalised to other nearby locations, including the option-type not 
used by the observed individual, especially in adults. We hypothesised that this effect may 
have been more option-type specific in the Flap/Stairs task. 
 
We aimed to fit the same stochastic model of interaction with the task to the Flap/Stairs data 
(Eqn. 17), allowing us to estimate and compare the specificity of the estimated transient 
effects for each task. However, there were some differences for the Flap/Stairs task 
experiment and data collection that meant some modifications had to be made. First, only one 
box was presented, so we could not separate the effects of box-level local enhancement and 
stimulus enhancement from that of the general effect and specific local enhancement, so the 
model included only parameters for these latter two effects. This was accounted for in the 
calculations of specificity (see below). Secondly, it was not recorded whether each observer 
of a task manipulation saw the manipulator gain access to the box, so we assumed that any 
observation of a successful manipulation resulted in direct social learning. Since the main 
aim of the model was to compare the specificity of the transient social effects, this is unlikely 
to have biased the results. Thirdly, if an observer was seen to go on to manipulate the task 
without leaving the task area, the observation and manipulation were recorded as occurring 
within the same bout. Consequently, here we assumed that manipulation occurred directly 
after observation. This means any estimates of the half-life of the effect are likely to be an 



underestimate, but given that we are interested only in the relative strength of option-specific 
and non-option-specific effects, this is not an important concern. 
 
As a measure of specificity, we calculated from the model parameters the probability that a 
naïve observer chooses the same option-type as the individual it has observed, given it 
manipulates one of the options directly after observation, i.e. when the transient effects were 
strongest (as predicted by the transient effect sizes estimated by the SMFM, and ignoring the 
effects of direct social learning). This is simply: Rate of manipulating the same option-type/ 
Rate of manipulating any option-type. Since there are different baseline rates of manipulation 
for each option-type, we averaged over the option-types in each case. For instance, for adults 
in the Flap/Tube task, the rate of manipulating the same flap immediately after observing a 
flap manipulation is 
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and the rate of manipulating the other flap immediately after observing a flap manipulation is 
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Therefore, the total rate of flap manipulation, after observing a flap manipulation is: 
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and likewise the total rate of tube manipulation, after observing a tube manipulation is: 
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Averaging these gives us: 
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as the rate of manipulation of the same option-type. By similar logic, the rate of manipulating 
the other option-type is: 
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giving us a specificity of: 
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The equivalent specificity for the Flap/Stairs tasks is: 
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Equivalent expressions were used to calculate specificities for pups and juveniles/sub-adults. 
 
When the option-type specific transient effects, such as specific local enhancement, are high 
relative to the total magnitude of all effects, we would expect specificity to be close to 1. This 
would indicate that a naïve observer will almost certainly chose the same option type as 
observed, if it interacts with a flap or a tube soon afterwards. When the option-type specific 
transient effects are small compared to the total magnitude of all effects, we would expect 
specificity to be close to 0.5. This would indicate that a naïve observer is no more likely to 
choose the same option-type as observed. In addition, even if the option-type specific effects 
are large compared to the total transient effect, specificity will be low if the baseline rates of 
interaction are relatively high, since this means social effects will be “drowned out” by 
observers’ spontaneous interactions with the task. 
 
We calculated specificities for each iteration of the MCMC sample (excluding the burn-in 
period), giving us an approximate posterior sample of the median specificity metric for each 



age class in each case. We also subtracted the specificity yielded for each iteration for the 
Flap/Stairs task from the corresponding iteration for the Flap/Tube task, giving us a posterior 
sample for the difference in specificity. A summary of results is given in Table S8. 
 

 
 

 Specificity for 
Flap/Stairs  

Specificity for 
Flap/Tube 

Difference in specificity 
Flap/Stairs – Flap/Tube 

Adults 1.0 
[0.98,1.0] 

0.56 
[0.28,0.86] 

0.43 
[0.13,0.72] 
<0.001 

Juveniles/Sub-adults 1.0 
[0.99,1.0] 

0.96 
[0.88,1.0] 

0.045 
[-0.0029, 0.14] 
0.040 

Pups 1.0 
[1.0,1.0] 

0.79 
[0.67,0.94] 

0.20  
[0.060, 0.33] 
0.002 

 
Table S8. The median and 95% HPD interval of the posterior sample for the specificity of the 
transient effect for the Flap/Tube and Flap/Stair tasks and the difference in specificity 
between the two tasks, for different age classes. Figures given in bold give the posterior 
probability that the specificity was less in the Flap/Stairs task for that age category. 
  
 
The results suggest that the transient effect of observation was considerably more option-type 
specific for the Flap/Stairs task for pups and adults, than for the Flap/Tube task. Greater 
option-type specificity is therefore likely to account for the finding that group-level traditions 
were evident in the Flap/Stairs task but not in the Flap/Tube task. In the Flap/Tube task those 
adults and pups that are attracted to the alternative option type will rapidly erode any initial 
group bias towards either option-type. Further work is needed to investigate whether the 
specificity of transient social effects are generally important in determining the emergence of 
traditions, both in meerkats and other species, and also to investigate the factors (e.g. task 
design) that determine the specificity of transient social effects. 
 
 

SUPPLEMENTAL REFERENCES 
 
41. Gelman, A., et al., (2004) Bayesian Data Analysis. 2nd ed. CRC, Boca Raton. 
42. Ntzoufras I (2009) Bayesian Modeling Using WinBUGS. John Wiley & Sons, New 

Jersey. 
43. Jaynes E.T. (2003) Probability Theory: The Logic of Science. Cambridge University 

Press, Cambridge. 
44. Johnson, D.H. (1998) The insignificance of statistical significance testing. Journal of 

Wildlife Management 63: 763-772. 
45. Therneau, T. & Lumley T. survival: Survival analysis, including penalised likelihood 

(2009). 
46. Fox, J. (2002) Cox Proportional-Hazards Regression for Survival Data, online 

appendix to An R and S-PLUS Companion to Applied Regression. Sage Publications: 
London. 

 


