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Protocol S1. Detailed description of the zero-inflated negative binomial statistical 

procedures. 

 

 In this supplemental protocol we detail the procedures used in our zero-inflated 

negative binomial mixture models (ZINB). We base our explanations on [1,2,3,4], 

where a more detailed discussion of the logic, mathematics, methodology and 

interpretation of ZINB models can be found. We base the examples given herein on 

our results. 

As mentioned in the Method section in the main text, there are two sources of 

zeros in ecological data: “false zeros” and “true zeros” [1,2,4]. In a mixture model, the 

complete distribution of the estimated counts (including zeros) is represented by two 

separate components: a zero component modeling the probability of false zeros and a 

count component accounting for the true zeros and non-zero counts [1,4]. The zero 

component is a binomial process. Hence, the probability that observation i of the 

response variable (Yi) is a false zero is binomially distributed with probability πi [4]. 

The count component is a count process. Therefore, the probability that Yi is a zero 

(false or true) equals the probability that it is a false zero plus the probability that it is 

not a false zero times the probability of sampling a true zero in the count process [4]: 

( 0) (1 ) ( )i i iP Y P true zero        (1), 

where P denotes probability. The count component can be modeled by a Poisson or 

negative binomial distribution [4]. In our models we used the negative binomial 

distribution as it had a better fit to the data in all cases [1]. A negative binomial 

distribution has a mean E(Y) = µ and variance var(Y) = µ+µ
 2

/k, where k is a 

dispersion parameter that determines the amount of overdispersion in the data (the 

smaller k, the larger the overdispersion) [4]. Following [1,2,4], we can take into 
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account the probability function of the negative binomial distribution to extend 

equation 1 also to a case where Yi > 0. We denote the probability of observation i 

being a zero or non-zero as: 
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   (2) 

where Γ is the gamma distribution and n is a natural number larger than 0. For our 

purposes, the details of equation 2 are of less importance. Instead, it is noteworthy that 

equation 2 indicates that P(Yi) is a function of µi, πi and k.  

We can use equation 2 to incorporate covariates in our analysis. In particular, 

we can model πi and µi as a function of a set of explanatory variables. For πi it is 

common to use a logistic regression with a logit link function, as it describes a 

binomial process: 

1 1 2 2 ...
log ( ) n nX X X

iit e
       

   (3), 

where α is the intercept, β1… βn are the model parameters we aim to estimate (i.e., 

what is presented in the zero component section of Table 2 in the main text), and 

X1…Xn is a set of explanatory variables such as host species or human population 

estimate (HPE). We can also model the dependence of µi on a different (or same) set 

of explanatory variables with the aid of a log link function: 

1 1 2 2log( ) ...i n nZ Z Z           (4), 

where γ is the intercept, δ1… δn are the model parameters we aim to estimate (i.e., 

what is presented in the count component section of Table 2 in the main text), and 

Z1…Zn is a set of explanatory variables. The log link function ensures that the 

estimated µi will not be negative, regardless of parameter values. 
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Incorporating model covariates in this manner allowed us to pose our 

hypotheses in the familiar regression form (see Table 1 in the main text). As with any 

regression, continuous variables are plugged directly into the model whereas 

categorical variables (i.e. host species) are incorporated through the use of dummy 

variables to account for the different levels of the categorical factor. When a specific 

factor level appears in the model, its value of X or Z is set as 1, or 0 otherwise. 

Commonly, as well as in the software we used [2,3], when more than one factor level 

appears in the model, the model parameters of each dummy variable are estimated 

relative to a reference level chosen arbitrarily among the factor levels, while the 

parameter of the reference level (intercept of the model) is calculated relative to zero 

[5]. For instance, suppose our categorical variable is ‘Species’, with four levels 

(species). If the parameter estimate for the reference level (e.g. Artibeus planirostris) 

is -0.271 and that of Carollia perspicillata is 0.488, it could be inferred that the 

parameter estimate for C. perspicillata is 0.488-0.271 = 0.217 (Table 1). 

For continuous variables, the slope of the linear fit of a certain level is added 

to that of the reference level. For example, suppose that the parameter estimate of 

HPE is 0.1 for A. planirostris (the reference level), and the parameter estimate of HPE 

for C. perspicillata is 0.2; then the true parameter estimate of HPE for C. perspicillata 

would be 0.3. We were interested in the difference of the count component parameters 

from zero. Consequently, we ran the best model four times, sequentially selecting 

each host species as the reference level for each run as suggested by [5]. 

After obtaining estimates for the parameters of the zero component of the 

model, we calculated the estimated odds of observing an excess zero as the 

exponential of the parameter estimate, following equation 3 [1]. We calculated fly 

abundance under a set of certain conditions (e.g., for a specific host species in a 
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location with specific HPE; Fig. 1) as suggested by [1, 4]. First, we used equation 3 

and the parameter values we estimated for the zero component to calculate the 

probability πi of a false zero. Automatically, 1-πi is the probability of obtaining a true 

zero. Then, we used the parameter estimates we obtained for the count component and 

plugged them in equation 4 along with the appropriate explanatory variables (e.g. 

Species, HPE). We multiplied the result of equation 4 by (1- πi) to ensure each zero is 

a true zero. 
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