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METHODS

Quantile normalization

Since our first stage removed the majority of bins with low S/N ratios and genomic bias, and since we
expect interesting regions to have good S/N ratios, we make the simplifying assumption:

εai = εbi = 0

νai = νai = 0; (1)

With this assumption the next step is to normalize the data to the same scale so that bin values in
the two libraries are comparable. We propose a quantile normalization method (similar to Bolstad et

al. 2003 [1]) to solve this normalization problem. We formulate the problem mathematically as follows.
Given two observed data yai = ga(xai) and ybi = gb(xbi), find a transformation f∗ = (ga ◦ g

−1

b ) such that
y∗bi = f∗(ybi) = ga(xbi). We make the following assumptions:

• The actual histone modifications Xa = {xai | i ∈ {1,m}} and Xb = {xbi | i ∈ {1,m}} follow the
same distribution, i.e., we have FXa

(x) = FXb
(x).

• Cumulative distribution functions (cdf) FXa
and FXb

are monotonically increasing.

• ga( ) and gb( ) are monotonically increasing.

The last two conditions imply that FYa
and FYb

are also monotonically increasing.

Theorem 1
Any function f̂ : ybi → ŷbi satisfies FŶb

(y) = FYa
(y) if and only if we have f̂ = f∗.

Lemma 1 FY ∗

b
(y) = FYa

(y)

Proof (of lemma):
FYa

(y) = P (Ya ≤ y) = P (ga(Xa) ≤ y) = P (Xa ≤ g−1

a (y)) = FXa
(g−1

a (y)) and
FY ∗

b
(y) = P (Y ∗

b ≤ y) = P (ga(Xb) ≤ y) = P (Xb ≤ g−1
a (y)) = FXb

(g−1
a (y)) = FXa

(g−1
a (y))

Proof (of theorem):

only if part : if we have f̂ = f∗, then from Lemma 1, we also have F
Ŷb
(y) = FY ∗

b
(y) = FYa

(y).
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Figure F1. The new inverse cumulative distribution function on the modified libraries (after stage 1). On the x axis
is the percentile, on the y axis are the bin values.

if part : if we have F
Ŷb
(y) = FYa

(y), then from Lemma 1, we also have FY ∗

b
(y) = F

Ŷb
(y). Additionally,

as cdfs are assumed to be monotonically increasing, they are one-to-one functions. Hence we can write
∀i, ŷbi = y∗bi, which in turn implies f̂ = f∗.

Theorem 1 states that if (i) we have FXa
(x) = FXb

(x), (ii) the cumulative density functions of Xa

and Xb are identical and monotonically increasing, and (iii) ga( ) and gb( ) are deterministic monotonic
increasing functions, then any transformation that meets the conditions of the theorem is our desired
transformation f∗ = (ga ◦ g

−1

b ).
To find such a transformation, we use the inverse cumulative distribution function (on the modified

data after removing noisy bins) of the enrichment level, as shown in Fig. F1. The x axis of this figure
is the percentile while the y axis is the bin values. The figure shows the La and Lb bin values plotted
against their cumulative percentile. To get the desired transformation of Yb, we must ensure that the
post-transformation data Ŷb follows the same cdf as Ya. We fit a spline smoothing function on the bin
values of library La, then, for all percentile values p, we perform a transformation f̂ : yb → ŷb such that
ŷb(p) = ya(p). The transformation f̂ ensures that the conditions of Theorem 1 are met.

Experimental Design

We carried out a series of experiments with the two libraries for H3K27me3 histone modifications (ES and
NP cells), including experiments for bias and sensitivity. The libraries were built with a bin size of 1000
base pairs. We compared ChIPnorm with six other normalization methods: (a) unit mean normalization;
(b) quantile normalization; (c) MACS peak finder; (d) ChIPDiff method [2]; (e) rank normalization; and
(f) two-stage unit mean normalization. We ran these methods on the H3K27me3 data for ES and NP
mouse cells provided by Mikkelsen et al. 2007 [3] (with whole cell extract (WCE) control library) and on
the H3K27me3 data (of Broad Institute) for ES and GM12878 (replicate 1) from the human ENCODE
project (ENCODE Project Consortium 2007 [4]). (GM12878 is a lymphoblastoid cell line produced from
the blood of a female donor with northern and western European ancestry by EBV transformation [4].)
Processing was done on individual chromosomes of the two libraries.

The methods other than ChIPnorm are as follows:

• unit mean normalization: is the standard Affymetrix scaling method for microarray data [1]. To
normalize the bin values xi of a library we calculated its trimmed mean x̄ (the mean of the non-zero
bins in the library) and then the normalized bin value is set to x′

i = xi/x̄. Finally a threshold (τ)
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was used to classify bins as differential or not.

• quantile normalization: the two libraries are quantile normalized, and a fold change threshold (τ)
is used to classify bins as differential or not.

• MACS peak finder method: Although MACS is a peak-finding software [5], we use it indirectly to
find differential regions as follows: peaks for one library are detected by giving the other library
as control, and the bins with peaks are considered as differential regions. The version of MACS
software used is “macs14 1.4.1 20110622”.

• ChIPDiff: ChIPDiff method [2] is applied to find differential regions.

• rank normalization: the bin values of each of the libraries are sorted separately; the sorted lists
are divided into 10 equal partitions, which we define as rank. Finally we compare the values of
corresponding ranks at each bin value in both libraries. If the difference between the values is
greater than a threshold ν then the bin is classified as differential.

• RSEG method: RSEG is a recently published method [6] to not only find peaks in histone modifica-
tions but to also identify differential regions (rseg-diff) between two histone modification ChIP-seq
libraries.

• two-stage unit mean normalization: we removed the noisy bins using the first stage of the ChIPnorm
method before applying the unit mean normalization and fold change classification.

For methods unit mean normalization, quantile normalization, rank normalization, two-stage unit
mean normalization, ChIPnorm, the fold change ratios where calculated by adding +1 on the numerator
and denominator before calculating the ratio so as to avoid the divide-by-zero case. For the sensitivity
analysis using the ENCODE data the corresponding gene expression data (RPKM - Reads Per Kilobase
of exon model per Million mapped reads) is obtained from the ENCODE Caltech RNA-seq database [4,7].
To calculate four-fold gene expression ratio for the ENCODE human data, the RPKM values of the two
libraries were required to be normalized so that they are comparable to each other. So RPKM values of
the library Lb was normalized by dividing it by the sum of all the RPKM values (of all genes) of library
Lb and multiplying it by sum of all the RPKM values (of all genes) of library La. A small offset value
of 5 was added to the RPKM values of each library before taking the fold change ratio so as to avoid
division by zero or very small values. This is a common procedure and some other values of offset could
also be chosen as it does not bias the results.

For the correlation with gene expression studies and the bivalent analysis studies, we classified the
genes from Mikkelsen et al. 2007 [3] into the five groups (A-E) based on their increasing log-ratio of their
expression levels in ES and NP cells. To ensure that each group has a good representation in terms of the
number of genes, we created a histogram of the differential gene expression and divide them into < −6σ,
−6σ to −2σ, −2σ to 2σ, 2σ to 6σ, > 6σ, from the mean, where σ is the standard deviation.

Results

Comparative Analysis

Table S1 shows the values of the five different thresholds T1, T2, T3, T4, T5, used in the sensitivity
analysis (Fig. 7 of main paper).
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Table S1. Values of the various thresholds (T1, T2, T3, T4, T5) used for the various methods used in Fig. 7 of main
paper.

thresholds unit-mean quantile MACS ChIPDiff RSEG two-stage ChIPnorm

unit-mean

τ τ p-val τ cdf τ τ

T1 3 11 10−2 1.1 0.25 0.98 2

T2 5 13 10−4 2 0.5 1.48 2.5

T3 7 15 10−6 3 0.75 1.98 3

T4 9 17 10−8 4 0.9 2.48 3.5

T5 11 19 10−10 5 0.95 2.98 4

Differentially enriched regions along protein coding genes

Fig. F2 shows the relative enrichment of the regions identified by the ChIPnorm for human ES and
GM12878 H3K27me3 ENCODE data along the various genomic features of protein coding genes (GEN-
CODE v3c genes [8]). The regions, which are differentially enriched in ES cells (L1 enrich), are present
along the 5’ flanking end and initial exons of genes. This shows that these regions are mostly present in
the promoter regions of genes. We also see that the regions that are differentially enriched in GM12878
cells (L2 enrich) are also present in the promoter regions of genes. However, regions, which are not
differentially enriched. (non differential) are absent along the promoter regions of genes. Therefore we
provide evidence that the promoter regions of protein coding genes mainly contain differentially enriched
regions and very few non-differential regions.
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Figure F2. Feature aggregate plot of the differential/non-differential regions identified by the
ChIPnorm method. Each row corresponds to a region from ChIPnorm and each column corresponds to
a genomic feature of protein coding GENCODE genes. Curve inside a cell represents the relative
frequency of overlap between the ChIPnorm identified regions and the genomic feature of GENCODE
genes, when compared to a similar relative frequency of overlap that would occur by random chance.
Figure created using Segtools [9].


