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Supplementary Methods

Generalized Simulated Annealing

In order to minimize the Weighted Score Ew, we used the Generalized Simulated An-
nealing (GSA) introduced by Tsallis and Stariolo, [1], instead of the classical Simulated
Annealing (SA) [4] used by Vazquez and coworkers [2]. SA is a general-purpose stochas-
tic optimization technique, based on the Metropolis-Hastings algorithm [3]. In GSA the
acceptance probability PE is based on Tsallis statistics instead of Boltzman distribution:

PE = [1− (1− q)β∆E]1/(1−q) (1)

where ∆E is the change in the potential energy, β = 1/kT and q is a free parameter.
The important feature of Tsallis generalized statistic for optimization problems is that
the probability of states does no longer decrease exponentially with energy but according
to a power law where the exponent is determined by the free parameter q. The parameter
q is varied as a monotonically decreasing function of temperature q(T ). Starting with a
convenient value of q at the initial temperature, q tends towards 1 as the temperature
decreases during annealing [5]. The algorithm is initialized with a configuration of states
σ = [σ1, σ2, ..., σn] selected among the possible biological functions and randomly assigned
to uncharacterized GPs. At each step of the Monte Carlo simulation we choose a random
unclassified GP i and substitute his state σi with a new state σ′i, where σ′i is randomly
selected among the possible biological function with the constraint σi 6= σ′i, as suggested
in Ref. [2]. After every function substitution we calculated the total energy E(σi) and
E(σ′i) for both the new and old states: if the difference ∆E = E(σi)−E(σ′i) is minor than
0 the new state is accepted. If ∆E is equal or greater than 0 the new state is accepted
with probability:

min(1, [1− (1− q)β∆E]1/(1−q)) (2)

To set up the initial tempereture T0 of the simulated annealing schedule we generated
1000 random solutions E0i and we took T0 as the standard deviation of these solutions:

T0 =

√√√√ 1

N

N∑
i=1

(E0i − E0) (3)
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where E0 is the mean of E0i and N=1000.
Starting from an initial temperature T0 at which nearly all transitions are accepted,

we used an exponential temperature decreasing scheme:

Tk+1 = aTk (4)

with a = 0.99. We choose the length of the Markov process independently for each per-
formed simulation, with the constrain that the proportion of accepted states in the whole
minimization process ranges between 0.4 and 0.6. The minimization process is stopped
when two consecutive iterations give the same solutions. At the end of the minimization
process a biological function is assigned to each uncharacterized gene product (GP) and
these are the predicted classification. However, since the minimum energy solution is not
unique or the optimization technique can be entrapped in a local minimum, we repeat the
simulated annealing several times (100 simulations) starting from different initial config-
uration. At the end of the simulation we calculate the fraction of time (pi) the GP i has
been predicted to have function σi, and this is the probability that the GP i belong to
the functional classification σi.

Algorithms Comparison

We compared the prediction capability of WNP algorithm with other five state-of-the-art
methods: Simulated Annealing (SA) approach by [2], FunctionalFlow (FF) [6], ChiSquare
(CHIS) [7], the FS Weighted Averaging (WA) [8] and the weighted average scheme (PC)
proposed Ref. [9]. SA algorithm was implemented in our labs in Fortran language fol-
lowing the recipe of Vazquez et al.. FF algorithm was implemented in our labs as an R
script and all the simulations were performed by using a number of iterations d = 6 as
suggested in Ref. [6]. The simulations for ChiSquare, WA and PC algorithms were run by
using the FSWeight perl package Version 2.2 implemented by Chua Hon Nian and down-
loaded from http://www.comp.nus.edu.sg/~wongls/projects/functionprediction/

fsweight-15may08/.
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