Supporting Information
Description of the multivariate dynamic linear model

The multivariate dynamic linear model [19] is a form of state space model for time series data with multiple observations. Dynamic linear model was chosen to accommodate the intrinsic serial correlation of infectious disease data, the observed mildly irregular seasonal pattern which usually violated the stationarity assumption, as well as missing data due to interruption of surveillance. In these models, observed data yt (representing a vector of data at time t) are assumed to be related to some underlying latent sequential process, or system. Allowing for this underlying system where subsequent (unobserved) system values θt and ηt are highly correlated, the consecutive observations yt are assumed to be conditionally independent. The design matrix F links each of the observed data to the same underlying latent process. With a Bayesian approach under this structure, multivariate normal distribution theory allows simple parameter estimation for some of the parameters. Formally, the model with local linear trend of the latent process is described by the following equations:


yt = F θt + νt
where νt ~ N(0, Vt), 

θt = θt-1 + ηt-1 + w1t
where w1t ~ N(0, (θ2), and

ηt = ηt-1 + w2t
where w2t ~ N(0, (η2), and
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In our specific application where we model four surveillance data streams, i.e. GOPC, GP ILI rate, school absenteeism and DFC fever counts data, we assumed a working uncorrelated structure for the observation variance matrix, which was shown to be adequate in a similar context (11). The uncertainty in each individual surveillance data was incorporated into the model by specifying the relative variances in the following form:


Vt = σ2 
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We fixed Vt ( V to be time invariant, but dynamic linear model allows time varying Vt which is particularly useful when there are changes in sample size or quality in individual data stream. ν1t, ν2t and ν3t were specified relative to the mean variances in each surveillance data assuming binomial errors and ν4t assuming poisson errors for the fever counts. In our study, we set (ν1t, ν2t, ν3t, ν4t) = (1, 30, 7, 8 × 1013).


Having fitted the model for data at times 1,…, t, we extracted θt and ηt as an estimator of the level and trend of the underlying influenza activity. The overall influenza index at week t was generated iteratively by combining the latent level and trend with the following formula, based on data up to week t. As a demonstration of the use of combining level and trend into an overall index, we arbitrarily transformed each of the inferred level and trend to the range [0, 1] and used their average as the overall index. More specifically, we set indext = [pLt + logit(pTt)T] / 2, where pLt and pTt are the percentile rank of the empirical distribution of θt and ηt respectively based on the estimates up to week t. logit(pTt)T are the logit transformation of the percentile ranks pTt linearly transformed to the range [0, 1]. The overall index ranges from 0 to 1 and take values close to 1 when both the overall influenza activity is high and increases rapidly. The index was not optimized with respective to an objective function but used as a simple transformation and integration of level and trend into an index in the range of [0, 1].
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