
1 Supplemental Text

1.1 Browsing large serial EM image sets

TrakEM2 is designed to represent a series of planar sections, each of which composed of an arbitrary

number of image tiles. The number of sections and the number of tiles per section are both limited

at 231, the highest signed integer that can be represented with the 4 byte word size of current desktop

computers. Each image tile represents a particular image file that resides on the local computer, or on

a remote file or web server. The system automatically manages loading, caching and unloading images

from their corresponding files.

Many images may be required to cover one tissue section. Each image is encapsulated in a

’tile’ that provides methods and data for manipulating it. The images themselves are presented in a

two-dimensional software canvas, the display (Figure 1e of main text). The location of each image is

controlled by its tile. Each image tile is manipulable as an independent unit both by the human operator

or programmatically, and has persistent properties such as affine and non-linear transformation, trans-

parency value and alpha mask, among others. Arbitrary properties may be stored as key-value pairs for

each tile. A variety of image types (8-bit, 16-bit, 32-bit, 8-bit color, RGB) may coexist within the same

section and display. Image tiles overlap following a specific, editable order, and are composed into the

field of view with consideration of the alpha channel, alpha value, and composite mode (add, multiply,

subtract, difference, and YcbCr color) of each tile (Figure 1d of main text).

Images are stored in tiles in their original source data form. These tiles are mapped to the

display by concatenating their series of locally stored transformations. A collection of general-purpose

coordinate transformations (affine or non-linear) enable arbitrary deformation, e.g. to correct for lens

distortions, or heat-induced non-linear deformations, for examples. An affine transformation positions

the resulting image into the 2d coordinate space of the section. A translation and scaling transformation

projects the images into the coordinate space of the field of view.

For fast visualization of arbitrary fields of view, the image is rendered concatenating the list of

coordinate transformations and stored in disk as an image pyramid, which is composed of pre-scaled

versions of the image called mipmaps (or MIP maps, where MIP stands for multum in parvo Williams,

1983). These are stored with lossy or lossless compression to relieve the already large storage space

requirements of the raw data, and they are loaded on demand with a caching strategy. Each section uses

a quad-tree strategy for fast lookup of tiles that intersect the field of view.

The EM automatic image acquisition software Leginon (Suloway et al., 2005) records the slice

and coordinates of each tile. This information is used for generating a 4-column text file, with data for
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the file path, x and y coordinates, and slice index. This minimal information is sufficient for importing

into TrakEM2 all image tiles and presenting them in a virtual canvas for their subsequent manipulation.

Other methods for importing individual image files and complete montages contained in file series are

available by drag and drop of images and folders, respectively. Direct programmatic access with any of

the languages supported by the Java Virtual Machine (JVM), such as python, is available, providing the

means to extend the functionality of TrakEM2 for any special-purpose application.

1.2 Assembling the volume with automatic registration of image tiles

The work flow for neuronal reconstruction from ssTEM begins by assembling the image volume from

a large number of image tiles (hundreds of thousands). These images have been acquired manually or

automatically, for example with Leginon (Suloway et al., 2005) or SerialEM Mastronarde (2005). Auto-

mated image registration algorithms face obstacles such as noise that occludes image data, section folds,

missing sections, lens distortion, and a variety of physically- and heat-induced non-linear deformations.

Calculating the correct alignment across all sections is difficult and prone to artefactual deformations.

In order to cope with these difficulties, TrakEM2 provides a flexible set of tools for automatic

image alignment and deformation correction both within and across section montages. The tools split

into two categories: landmark based and intensity based. Landmark based techniques extract corre-

sponding landmarks in two images using the Scale-Invariant Feature Transform (SIFT; Lowe, 2004).

SIFT interest points are blob-like structures in an image. For each interest point, a scale and rotation-

invariant descriptor is extracted such that correspondences candidates between two images can be iden-

tified by matching the descriptors of all extracted features. For overlapping images, the set of correspon-

dence candidates will contain both true and false matches. For non-overlapping images, there are only

false matches. Such false matches are rejected using a combination of the Random Sample Consensus

(RANSAC; Fischler and Bolles, 1981) and a robust regression filter (Saalfeld et al., 2010) delivering the

largest set of correspondence points that support a common transformation up to an approximately

normal distributed transfer error. For non-overlapping images, this set is empty which is used to reveal

non-initialized montages and to identify disconnected or empty images automatically.

Digital EM images often show a static background texture that is an uncompensated artifact of

fiber optics in the scintillator that transforms incoming transmitted electrons into photons for the camera

to capture. TrakEM2 is able to ignore such static background texture during alignment by rejecting the

largest set of true matches if the supported model is the identity transformation. Instead, the second

largest set is used if available.

Automatically extracted landmark correspondences are used for fast series alignment, section
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montaging and to automatically correct for the EM magnetic lens deformation using redundantly over-

lapping calibration montages (Kaynig et al., 2010a).

The most sophisticated landmark based alignment method establishes correspondences for

each tile not only to overlapping tiles within the same section but as well to all overlapping tiles in ad-

jacent sections. Finally, a global optimizer estimates an independent rigid transformation for each tile

such that the sum of all square landmark correspondence displacements is minimized (Saalfeld et al.,

2010). If the result is directly applied as a rigid transformation to each tile, section montages will appear

imperfectly stitched because displacements within a section compensate for cross-section distortion. In-

stead, for each montage, a smooth control-point based non-linear transformation is created that maps all

tile center points from the independent montage into the desired location. This transformation smoothly

warps each montage into global series alignment.

This method is also capable of registering very sparse representations of a neural arbor, such

as multiple non-overlapping images in each section which are centered on the dendrites or axons of

interest. The lack of relationships between images in the same section is offset by the graph of image

relationships across 3d space, which is used to compute the optimal pose of each image in the volume.

Except for the optimizer, all operations proceed in parallel for maximum performance on mod-

ern multi-core chips. The registration of 33,000 image tiles (2048x2048 16-bit px) spread over 458 sections

requires 5 days in a computer with a 4-cores 2.4 Ghz CPU and 4 Gb of RAM.

For best performance, sections are montaged automatically and independently beforehand.

This is efficient given that the original image tile is neither modified nor duplicated, but a mere affine

transform is recorded for its pose in space.

Usually the approximate location of each tile is known either from the index (image tiles are

acquired in order) or from the stage position information contained in the file’s metadata. Intra-section

montaging is thus reduced from an all-to-all search, to a search for correspondences between tiles known

to be overlapping. Then a low-resolution snapshot of consecutive sections is used to estimate a rough

alignment using a rigid transform. In this manner, registering all sections is reduced to a search of corre-

spondences between image tiles that overlap within or across sections. This strategy reduces immensely

the number of operations to compute: From 3×sn-1 per tile (intrasection and with previous and next

sections, where sn is the number of tiles in a section) to typically 16 per tile.

Serial section EM data sets may grow over many months or years. It is usually desirable to be-

gin analysis when only a subset of sections has been imaged. This raises the problem of re-registering the

existing registered volume along with annotations and any reconstructed elements such as neurons, as

the data set expands. TrakEM2 stores the extracted SIFT features and their discovered correspondences
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of the current model in temporary serialized data files. As new sections are inserted or appended,

the automatic registration can make use of these stored features and correspondences. This approach

greatly reduces computation time at the cost of marginal storage space. The manually or automatically

reconstructed neurons and other elements are transferred to the updated model, after transformation of

their underlying image tiles.

TrakEM2 offers three intensity based methods for image alignment. Firstly, phase-correlation

based montaging (adapted from Preibisch et al. (2009), which is a very fast method for montaging a sin-

gle section with translation-only transformations. The method is best used when there is prior informa-

tion about the approximate position of each tile. Tiled fluorescence images, which are generally sparse

and for which SIFT features can be extracted only with difficulty, are best montaged using the phase

correlation method. Secondly, section series can be aligned sequentially using cubic B-splines. These are

pre-seeded with a rigid or affine transformation (computed from SIFT correspondences) that estimates

a rough initial alignment. The method applies the software library bUnwarpJ (Arganda-Carreras et al.,

2006), and is useful for short series where artifacts generated by non-linear registration do not pose a

significant problem. Finally, TrakEM2 incorporates a method for elastic montaging and series alignment

(Saalfeld et al., submitted to Nature Methods). In this method, images are modelled as elastic sheets us-

ing a particle-spring system. Corresponding locations in overlapping images are estimated using block

matching and connected by zero-length springs. Relaxing the whole system creates a set of aligned

images with the required non-rigid deformation being equally distributed among all images.

1.3 Manually correcting automatic image registration with affine and non-linear

transformations

Automatic image registration methods may fail to achieve sufficient results in the presence of multiple

sources of noise or missing data. TrakEM2 enables to manually and programmatically manipulate every

image tile in the data set. Both the non-linear and affine transformations of a tile or a group of tiles in

a section are adjustable from the graphical interface (Fig. S2, S3), and means are provided to propagate

the resulting transformation to subsequent sections. In this manner, we address a frequent problem in

serial section EM: The presence of gaps in the series, be it missing sections or noise in a section that

make inter-section registration difficult. In such case, the serial section set is automatically partitioned

into independent continuous subsets, expressed as independent graphs of connected image tiles. The

sections of each subset are registered automatically and independently of other subsets. Thereafter the

last section of one subset and the first section of the next are registered manually.

For the purpose of manual multi-section registration, the display of TrakEM2 is able to present
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simultaneously the montages corresponding to multiple sections. There are several strategies. (1) Ren-

der up to three sections, each as a color channel in an RGB image (red, green and blue); regions that

correspond across sections appear in yellow when two sections are presented one in red and the other

in green (Fig. S2). (2) Render any number of sections transparent, with section-wise composite strategies

such as add, subtract, multiply, difference, and color (YCbCr). The difference composite mode is most

practical for visually evaluating the correctness of the registration (Fig. S1 a, b).

Section folds complicate the alignment of series of sections. A fold on the otherwise flat 50

nm-thick section appears as a blackened stripe that swallows part of the surface and leads to missing

data. Stretching the folded area is possible with an interactive non-linear registration method (Fig. S4

b). Alternatively, the image tiles under the fold may be split at the fold line, allowing the halved tiles

to move and stretch independently for optimal registration with adjacent sections (Fig. S4 c). A similar

method is applicable to dilated bands (Fig. S3).

1.4 Image adjustment

Raw images from the electron microscope must be adjusted for both processing and visualization pur-

poses. Raw images have uneven illumination, low contrast, and areas with extreme differential contrast

such as those under the shadow of a fold in the support film (Fig. S5 b). Some kinds of noise (such as

precipitated uranyl acetate) can be largely removed by local contrast adjustment (Fig. S5 a). Adjusted

images are not only easier for the human observer, but also crucial for the correct operation of key al-

gorithms. For example, feature extraction with SIFT (Lowe, 2004) deliberately works in the specified

contrast range of an adjusted image by which the algorithm can be directed to focus on desired texture

while ignoring background or noise.

TrakEM2 offers a variety of automatic and manual image adjustment tools. The minimum and

maximum values of the display range of an image tile or group of tiles is adjustable. The histogram of

one or more tiles can be equalized or normalized, either tile-wise or by incorporating the statistics of a

group of tiles. The most powerful manipulation method is with preprocessor scripts, which are arbi-

trary programs that modify the image data after it is loaded from the file but before TrakEM2 handles

the contained image. These scripts are written in python, javascript or beanshell, three languages imple-

mented for the JVM, and have complete access to all included software libraries. A common setup is to

adjust uneven illumination by correcting with a bright-field image (that is, an image of the background,

sometimes computed from the image itself by applying a median filter with a radius of half the image

width), or to perform contrast limited adaptive histogram equalization (CLAHE, Zuiderveld, 1994). The

application of all the above methods alters the precomputed image pyramid of each tile (the mipmaps)
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and the properties of each image tile, but the original images remain unchanged.

TrakEM2 also offers live filters, that process the screen image that shows the field of view and

not the underlying image tiles or their mipmaps on the fly. Live filters have the advantage of being

very fast and light-weight, and are sufficient in many occasions. Included live filters are display range

adjustment, inverting the image and CLAHE (Zuiderveld, 1994; Fig. S6).

Raw images usually have undesirable borders. These are smeared insets, an artifact of the

CCD chip of the EM camera. Cropping the complete collection of original images only to remove the

border would result in duplicating the size of the data set, or destroying original images–both unaccept-

able practices. TrakEM2 offers automated methods to remove these borders by applying an alpha mask

to each image tile, which specifies areas of the image that are rendered with arbitrary transparency val-

ues (Fig. S4). These masks are compressed with a lossless algorithm such as ZIP and usually take up less

than 1/1000 of the image file size. Beyond masking borders, alpha masks can be set manually or pro-

grammatically and are useful to express non-linear transformations in images without having to crop

the borders to the minimally included rectangle (Fig. S4 b), and also to split images into two or more

independent tiles for the purpose of independent registration (Fig. S4 c). Alpha masks are included in

the precomputed mipmap images for best performance.

1.5 Image segmentation for 3d object reconstruction

Imaging and registering serial sections is only the first step towards the reconstruction of neuronal

circuitry embedded in a set of serial sections. Each individual structure of interest, be it a neuron, a

synapse, a glial cell, a vessel, or parts thereof, may be reconstructed precisely or coarsely using different

tools offered by TrakEM2. The most accurate reconstruction is volumetric and consists in labeling areas

with a paint brush in every section where the structure appears. For example, the cross section of a

dendrite may be brushed in a specific color over multiple sections. The calibrated dimensions of the

section specify a volume for that 2d area; the concatenation of areas from all sections with an algorithm

such as marching cubes (Lorensen and Cline, 1987) results in a 3d mesh model. TrakEM2 uses the ”3D

Viewer” library for 3d visualization and mesh operations (Schmid et al., 2010; Fig. S7).

Accurately labeling areas by hand is a very time-consuming task. TrakEM2 provides three

semi-automated methods: (1) fast marching level sets, which grow an active contour from a seed point

(Sethian, 1996); (2) a lasso tool that grows an area interactively according to pixel value intensities; and

(3) a magic wand that is most useful for homogeneous areas such as structures found in laser-scanning

microscopy images. Fully automated methods are currently the subject of intensive research. The lead-

ing strategies employ machine learning algorithms such as Random Forest (Breiman, 2001), Support
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Vector Machines (Cortes and Vapnik, 1995) or Convolutional Neural Networks (LeCun et al., 1989) that

are trained to classify pixels as belonging to user-defined labels by inspecting a vector of features for

each pixel (Kaynig et al., 2010c,b; Turaga et al., 2010). These features are statistical measurements taken

for a defined area centered at the pixel (for a detailed explanation see Jain et al., 2010), including edge

detectors, difference of Gaussian values, Gabor filters and many simpler ones such as minimum, aver-

age and maximum pixel intensity values. Fiji, the open source image processing application that hosts

TrakEM2, offers an implementation of these machine learning approaches in the plugin Trainable Seg-

mentation. Newer impressive tools like ilastik (Sommer et al., 2011) perform similar operations in three

dimensions for isotropic volumes. The results of applying machine learning-based segmentation are

image volumes that contain regions defined by unique pixel values. These are imported into TrakEM2

and converted there into editable vector graphics objects that are overlaid on the image tiles.

A neuronal arbor is represented across the serial section set as a series of 2d areas. In the

software Amira (AmiraVis), these areas are represented by voxels and are not structured. In the software

Reconstruct (Fiala, 2005), the areas are structured as a list, at one per section; each area is really a multi-

path object that can express topological constructs such as holes and islands, which are beyond a simple

undivided area. This structure is mimicked by TrakEM2’s ”area list” segmentation type (Fig. S7 a). Both

representations present difficulties when errors are found in the reconstruction. A typical example is

that a branch does not belong to the particular neuronal arbor of interest, and it must be split away.

Branches traverse the same sections in multiple directions, and thus within the same section different

branches are expressed by a single multi-path area object without any explicit relationship with the

corresponding area in adjacent sections other than approximate position. The correction is error prone

and time consuming. The usual approach is to erase the incorrect branch instead of merely splitting it,

incurring in additional labor.

A better segmentation data type would be structured to correspond, topologically, to the struc-

ture of interest; in our case neuronal arbors (Figure 2 of main text). TrakEM2 offers the ”area tree” data

type, which consists of a tree of parent/child nodes where each node hosts a single area (Figure 2e,f of

main text). The tree is re-rootable at any node and thus any branch with all its subbranches may be split

away with a trivial operation (Figure 2 h-j of main text). Merges are also trivial. Splits and merges are the

two necessary operations for correcting automatic neuronal reconstructions (Jain et al., 2010; Chklovskii

et al., 2010).

The second aspect of both manual and automatic segmentation in anisotropic EM images is

the linkage of 2d areas across sections (Kaynig et al., 2010b; Chklovskii et al., 2010). In all existing image

segmentation programs this relationship is expressed as all or nothing. In TrakEM2, the parent/child

relationship of nodes in an ”area tree” is annotated with a confidence value that expresses the certainty
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in the relationship. In the tabular view of the nodes of an ”area tree”, nodes are sortable also by confi-

dence, which enables rapid inspection of all dubious assignments (Figure 2c of main text). With noise,

missing sections, and very thin dendrites shadowed away by the thickness of a section (50 nm), the

confidence value is useful in expressing the minimally trustable arbor of a neuron, with all potential

terminal branches being skeletonized as well but with lower confidence. Some of the branches labeled

with a low confidence value may be validated to some extent with confocal microscopy imaging of the

same neuron, a comparison possible in stereotyped systems such as Drosophila (Cardona et al., 2010); or

later on by elimination when the reconstruction of the image volume approaches completion (that is,

all possible neurites have been skeletonized). The concept of confidence in the assignment of relation-

ships is also applied to postsynaptic targets of a presynaptic bouton, as represented by instances of the

”connector” data type (see below). This confidence is useful to express potential relationship when the

postsynaptic nature of a terminal cannot be fully elucidated (Figure 2h of main text).

1.6 Stick-and-ball models

TrakEM2 supports both fluorescently labeled and EM image volumes. The resolution of laser-scanning

microscopy (LSM) is improving with supraresolution techniques (such as STED, Klar et al., 2000; and

PALM, Betzig et al., 2006) but these are not yet applicable to image volumes. In the usual case details

such as terminal dendritic branches are not resolvable in LSM image volumes. A useful operation is to

automatically trace the lowest-order branch of a neuron and then compare it across multiple brains to

quantify stereotypy or to elucidate the identity of the neuron relative to a reference database (Cardona

et al., 2010). TrakEM2 offers the ”pipe” and ”polyline” data types which are useful for sketching tubular

structures with Bézier curves and polylines, respectively (Fig. S8). The automatic tracing tool enclosed

in the Simple Neurite Tracer program and library (Longair et al., 2011) is transparently accessible from

TrakEM2 for semiautomatic reconstruction of neuronal branches. The results of the semiautomatic trac-

ing are expressed as instances of the ”polyline” data type.

The topology of a neuronal arbor and the location of synapses on it are essential for recon-

structing neuronal circuitry. The precise reconstruction of the volume of a neuronal arbor is useful for

functional yet not essential for anatomical circuitry reconstruction. The ”area tree” data type offered

by TrakEM2 doubles as an area container for volume reconstruction and a skeleton representation of a

neuronal arbor (Figure 2e,f of main text). The ”area tree” enables practical approaches such as manually

sketching the arbor and then automatically filling in the area of sectioned axons and dendrites, by using

each tree node as a seed point for level sets or for picking an area generated by machine learning-based

image segmentation methods. The ”tree line” data type uses a radius at each tree node for a stick model
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of the arbor (Figure 2 a-c,g of main text).

TrakEM2 also offers a ”ball” data type, which represents a group of spheres. This tool is useful

for example for the representation and counting of neuronal nuclei or synaptic vesicles (Fig. S8).

1.7 Annotation

An EM serial section set contains a large number of structures of interest such as neurons and synapses.

In the course of the analysis, the human operator or an automated search algorithm identifies numerous

structures that must be annotated for future reference. For this purpose, TrakEM2 offers floating text

labels, which are searchable with regular expressions.

The manual reconstruction of a neuronal arbor is complicated by its branchiness. The ”area

tree” and ”treeline” data types consist of a tree of parent/child nodes, where each node holds spatial

coordinates and can be annotated with arbitrary text tags. A tabular view of a tree is a sortable list of

rows, one per node. Sorting its text labels permits rapid navigation of annotated structures of interest

in the neuronal arbor. For example, we use ”TODO” labels to tag branch stubs while reconstructing a

principal branch, so that these branches are not neglected. Other tags document synapses and other

structures of interest (Figure 2b,c of main text).

When the number of reconstructed objects exceeds the hundreds, tracking which objects rep-

resent what structure, and with what properties, becomes difficult. TrakEM2 offers an annotation field

for each reconstructed object so that information can be stored in direct association with the structure

of interest (Figure 2a of main text). All text-containing elements in TrakEM2 are searchable by regular

expression, for rapid navigation to the object of interest (Figure 2b of main text).

1.8 Neuronal circuitry reconstruction with skeleton trees and connectors

The reconstruction of a circuit requires on the one hand the reconstruction of its constituent elements,

the neurons and glial cells; and on the other hand, the annotation of their connections, the synapses

and gap junctions. TrakEM2 offers the data type ”connector” to establish a directional relation between

elements. A ”connector” relates a single source structure, such as a presynaptic terminal, with one or

more target structures, such as postsynaptic terminals of a polyadic synapse (Figure 2a,h of main text).

The manual reconstruction of neuronal arbors is a very time consuming, and yet it is the cur-

rent state of the art for serial section EM of complete neuropils (Bock et al., 2011; Briggman et al., 2011).

The fastest manual neuronal arbor reconstruction method to date uses trees of parent/child nodes that
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represent the skeleton of the arbor (Helmstaedter et al., 2011). TrakEM2 offers two types of skeleton: the

”area tree”, in which each node is associated to an area, and the ”tree line”, in which each node has a

radius. The former is useful for rapidly sketching the arbor of a neuron and later on filling in the area

that represents the sectioned neurite profile. The latter is useful for an approximate representation of

the arbor with approximate contours of the branches. Both data types enable trivial correction of split

or join errors. A special-purpose graphical interface provides the means for a quick and comprehensive

review of reconstructed arbors (Figure 2c,d of main text).

The circuit emerges by relating nodes of multiple ”area tree” arbors with ”connector” synapses.

With TrakEM2, a small Drosophila larva interneuron with approximately 120 microns of cable length, 20

presynaptic sites and 20 postsynaptic sites, and existing in over 400 serial sections, is reconstructed by a

human operator in less than 2 hours (for an example of a small interneuron, see supplementary movie 1).

Complex interneurons with 400 microns of cable and about 150 presynaptic and 150 postsynaptic sites

require several days. A disproportionally large effort is required for small terminal dendrites (which are

more abundant in larger arbors), and in annotating postsynaptic partners in polyadic synapses.

Each node of a tree carries text tags that label either biological structures of interest such as

membrane specializations, or details of the underlying images such as the presence of support film

folds and noise. The latter kind of annotations are useful for tuning the initial set of assumptions of

an automatic image segmentation algorithm. All tags are searchable for rapid navigation of regions of

interest in the reconstructed neuronal arbor (Figure 2b,c of main text).

The ”connector” elements that relate two or more objects transform a collection of recon-

structed objects into a meaningful graph—the circuit. Connectivity-based edition, analysis and visu-

alization are then possible. For example, all arbors downstream of a specific arbor may be added to the

canvas selection and then collectively counted, measured, colored or displayed in 3d.

A common strategy for reconstructing specific circuits is to reconstruct a neuron of interest and

then reconstruct every neuron that synapses onto it or receives a synapse from it. TrakEM2 facilitates

this task by listing all the synapses of a neuron with their synaptic partners in a sortable table. The task

then consists in jumping to each position and reconstructing each neuron, performing a breadth-first

reconstruction of the circuit around the neuron of interest. In this manner, the shortest circuit paths

between a specific sensory axonal arbor and a specific motorneuron are found with minimal effort.

TrakEM2 exports the reconstructed circuity to the neural network format NeuroML (Gleeson

et al., 2010). The network is then ready for functional analysis in the neural circuitry simulation soft-

ware packages Neuron (Carnevale and Hines, 2006), neuroConstruct (Gleeson et al., 2007) or the generic

simulator PyNN (Davison et al., 2009); or for morphological and developmental simulations with the
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software package CX3D (Zubler and Douglas, 2009).

1.9 Measurements

The hierarchical structure that organizes reconstructions in TrakEM2 enables measurement at the de-

sired level of abstraction, be it a part of a neuron, a single neuron, a group of neurons related by their

neuronal lineage, entire compartments or tissues, or more generally any collection of arbitrarily grouped

elements (Figure 3 of main text). The measurement of an individual high-order element results in the

accumulation of the measurements of all underlying primitive objects that represent the reconstructions

(e.g. instances of ”area tree”, ”connector”, ”area list” etc.) in appropriate tables of results, listing counts,

lengths, surfaces, and volumes. These tables are exportable as comma-separated values for further pro-

cessing Fig. S8 f).

The tree data types offer customized measurement methods. For example, to measure the

distance of all ”presynaptic site” tags to the root of the tree (Fig. S9 a), to measure the distance of all

presynaptic sites (as labeled with ”connectors”) to the root or a marked node, to measure lengths be-

tween two chosen tree nodes, or to measure the lengths between all existing specific tag pairs. The latter

is useful for example for quantifying the length, diameters or volumes of spine necks when suitably

labeled.

The ”dissector” data type enables the estimation of object densities (such as synapses) in the

volume with the double disector method (Geinisman et al., 1996) (Fig. S9 c). A grid overlay parcels

the 2d image space for sampling or as a reference (Fig. S9 c). The ”polyline” data type, among other

purposes, is useful for quantifying lengths of any structure across 3d space (not shown).

TrakEM2 is embedded in the image processing environment provided by ImageJ (Rasband,

2011) and Fiji (http://fiji.sc). ImageJ provides a number of region of interest (ROI) tools for mea-

suring and quantifying images. All of these ROI tools are accessible from TrakEM2 for direct calibrated

measurements of structures in two dimensions. Measurements in 3d are performed with TrakEM2’s

primitive data type ”polyline” (for lengths) and ”area list” (for volumes), or with any other suitable

data type.

1.10 Customizing TrakEM2 for special-purpose applications

The open source nature of TrakEM2 enables customizations at all levels. While the most common are

scripts and additional graphical interfaces, the source repository may be forked and modified at will for

any special purpose (for an example see Bock et al., 2011). Furthermore, any potential problems with
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the application itself or requests for new features are addressed within days, powered by the continuous

deployment model offered by the host image processing environment Fiji (Schindelin, 2008).

Every operation accessible to the human on the graphical display is also available for pro-

grams to execute. Any language available for the JVM is capable of invoking functions in TrakEM2’s

internal data structures and libraries. We favor the python scripting language and we have elaborated an

extensive introduction to hacking TrakEM2 with python in wiki format (http://fiji.sc/Jython_

Scripting). Common uses include customized means to import image collections, special-purpose

coloring of segmentations, object annotation, and batch processing of image tiles or segmentation ele-

ments (for an example of a script see Fig. S9 d).

The graphical interface itself is extensible for special purpose applications. For example a new

tab may be added to host special purpose fields for entering data and applying operations to selected

objects. ImageJ and Java libraries provide any desired graphical widget for further customizations.
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