SUPPLEMENTARY MATERIAL
The supplementary material is organized in two main parts: one discussing the generalized singular value decomposition (GSVD) more in depth and one containing the MATLAB source code for 1) an (adapted) GSVD algorithm based on the rank determining algorithm of Paige and Saunders (1981), and 2) for the rotation of a matrix to a partially specified target.

In depth discussion of the GSVD
The main purpose of this part of the supplementary material is to clarify issues that were raised in the paper but not sufficiently explained (due to page constraints) and these issues are: 
1) to give theoretical support to the observed inferior performance in terms of least squares of the GSVD compared to DISCO-SCA, especially in the presence of common components (see sections 1 & 2 hereafter), 

2) to discuss uniqueness problems for errorless data (see section 3), 
3) to generalize the simulation results of the accompanying manuscript (see section 4), 
4) to clarify how warranted use of the GSVD results in a well-performing least squares method and show the close links between the adapted GSVD algorithm and simultaneous component analysis via DISCO-SCA and SCA-IND (see section 5). 
We start by presenting the GSVD decomposition and the GSVD algorithm of Paige and Saunders (1981).
1. Decomposition and algorithm (Paige and Saunders, 1981)

1.1. GSVD decomposition
We consider two data matrices that are coupled in the columns: Let these be denoted by X1 of size I1×J and X2 of size I2×J. Also, Q is the rank of the concatenated data [X1 T X2 T]T. The GSVD decomposition (Paige and Saunders, 1981) of these blocks is then given by 
X1=U1S1VT                    


(1)
X2=U2S2VT ,                   


(2)
with U1 (of size I1× I1) and U2 (of size I2×I2)  orthogonal, S1 (I1×Q) and S2 (I2×Q) matrices with zeros everywhere except for the diagonal positions of the square matrix containing the first Q rows and columns of S1 and the last Q rows and columns of S2. For these diagonal positions, it holds that s²1qq+s²2qq=1 (see Paige and Saunders, 1981, for a proof). V (J×Q) is a matrix of full rank that represents the common structure shared between X1 and X2. 

1.2. GSVD algorithm (Paige and Saunders, 1981)

Step 1: SVD of concatenated data

Xc=[X1T X2T]T=UcScVcT



(3)

with Xc of size (I1+I2)×J, Uc (of size (I1+I2) ×Q) and Vc (of size J×Q) orthogonal, and Sc (Q×Q) a diagonal matrix with the diagonal elements in a non-increasing order.
Step 2: SVD of block-specific parts of the left singular vectors Uc

[image: image1.wmf]1

1

2

2

I

c

c

I

c

Q

éù

=

êú

ëû

U

U

U






(4) (I1, I2, and Q: notation to indicate size)

Step 2a: SVD of Uc1 -> gives solution of U1 and S1 in (1)

Uc1=U1S1WT



(5)

with U1 (I1×I1) and W (Q×Q) orthogonal and S1 (I1×Q) as specified in (1).

Step 2b: SVD of Uc2  ->  gives solution of U2 and S2 in (2)

Uc2=U2S2WT 



(6)

with U2 (I2×I2) orthogonal and S2 (I2×Q) as specified for (2).

 For the proof of the equality of W in (5) and (6), see Paige and Saunders.

Step 3: Derivation of V in (1) and (2)


V=VcScW



(7)

2. GSVD does not yield the least-squares approximation of  [X1T X2T]T
Because DISCO-SCA is based on a rotation of the rank R approximation obtained by SCA (which is equivalent to a SVD of the concatenated data), it is a least-squares method. This means that for a given number of dimensions/components R, it has the lowest sum of squared residuals in approximating the concatenated data [X1T X2T]T. A classical measure to assess the approximation of the model to the data is the complement of the sum of squared residuals, named the variation accounted for (VAF). Note that the VAF by DISCO-SCA is, due to its least-squares property, maximal. Here, we will show that the VAF by the GSVD components can be expected to be less than the VAF by DISCO-SCA.     

2.1. Expressions for the Variation Accounted For by the GSVD
In this section, we will show that for the GSVD, the VAF by a component r can be calculated as wrTSc²wr with wr the rth column of the matrix W in (5) and (6) and Sc² the matrix of squared singular values of the concatenated data.

The Variation Accounted For (VAF) is defined as the data sum of squares minus the sum of squared residuals:
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(8)
First we show that as for principal and simultaneous component analysis, it also holds for the GSVD that the VAF can be calculated as the sum of squares of the modeled data, 
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PROOF:
Note that
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(9)
with the subscript R denoting the R model components and J-R the remaining components. Given that the terms at the right of (9) are orthogonal (such that 
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) and that both U1 and U2 are orthogonal, equality of the VAF to the sum of squared model data, follows directly. Here we give a full development, starting from equation (3):
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 which completes the proof.
Using the property that the VAF equals the sum of squared modeled data, the VAF in X1 and X2 (or, in the concatenated data Xc=[X1T X2T]T) by GSVD component r can be calculated as follows:
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Because s²1rr+s²2rr=1, the derivation also shows that s²1rr and s²2rr can be interpreted as the proportion of VAF by GSVD component r respectively in X1 and X2.

From (7) and (11), it follows that the VAF for component r equals:
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which links the VAF by GSVD component r to the VAF by SCA component r (namely scr²).

2.2. VAF will be in general less than maximal

Note that the VAF by SCA component r equals scr², this is the maximal amount component r can account for given the previous r-1 components. The maximal total amount of VAF by R components then equals 
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. So, in order for the R GSVD components to account for the same (maximal) VAF, we need to have 
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. In general this is not the case. Exceptions are a block-diagonal matrix W and the degenerate case that sc1²=…=scR²=…=scQ².
Explanation:
Suppose the GSVD components are ordered according to the singular values of the concatenated data. Then the VAF by the R GSVD components associated to the R largest singular values is,
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and this equals 
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in the exceptional cases a) that sc1²=…=scR²=…=scQ² (note that, due to WWT=I, 
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. For a block-diagonal W matrix (that has wrq=0=wqr with r=1…R and q=R+1…Q) the latter condition is fulfilled but in general it will not be the case (note that sc1²>…>scR²>…>scQ²≥0 and that 0≤wqq²≤1). 
We just illustrated that the GSVD can be expected to have less than maximal VAF for the concatenated data. Also, we hinted at exceptional cases where the GSVD will have maximal VAF. The case of a block-diagonal W matrix is of particular interest because it shows up for data with the following special structure: Let X1P of rank R represent the part of the data matrix X1 containing the structural information, let N1 of rank Q-R represent the part of X1 containing only noise, and let these parts be orthogonal to each other. Here, we will show that such data yield a block-diagonal W matrix such that the GSVD will have the same optimal least-squares approximation as DISCO-SCA (this is, the same VAF).

If the noise is uncorrelated with the part containing the structural information in the data, we obtain the following result,
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Also, combining (1) and (7),
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Applying (14) to this result with the structural part X1P coinciding with the first R GSVD components (the first term in (15)) and the noise with the last Q-R (the last term in (15)), this implies that the sum of all terms in (15) containing a mix of the first R and last Q-R components should be 0. Using this result, we have
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Taking into account that both Sc and S1 contain non-zero elements on their diagonal, this means that WR(Q-R)     and   W(Q-R)R   equal    zero.    In other words, data that can be decomposed in two orthogonal parts where one parts contains the structural information of the data,  yield a block-diagonal W matrix and thus maximal VAF by the GSVD approximation. In practice there is always some correlation of the noise with the structural part of the data, especially for omics data (see Jansen et al., 2005 and Smilde et al., 2009) so in empirical applications it can be expected that the VAF by the GSVD will be less than by DISCO-SCA.
2.3. GSVD performs better for distinctive than for common components
Why does the presence of (correlated) noise in the data affect less the distinctive than the common components?

As Uc is an orthogonal matrix resulting from the SVD of the concatenated data (see (3)), and represents the orthogonal matrix of left singular vectors 1) each vector of Uc has length one: ||ucr||=1=||ucr||²=||uc1r||²+||uc2r||² for all r, 2) for components that are distinctive for X1 (X2), the corresponding block-specific values in uc2r (uc1r) are approximately zero, 3) for common components it is not the case that one of the block-specific parts has all values close to zero, and 4) components associated to noise also have ||ucr||=1. For distinctive components, due to the (near-)zero values in either uc1r or uc2r, orthogonality of uc1r (uc2r) to any of the uc1(Q-R) (uc2(Q-R)) will be (approximately) reached. This can be understood as follows: a distinctive component yields all (near-)zero values in either  uc1r or uc2r, and a zero-vector is orthogonal to any other vector. Let uc1r be the part with all zero values; due to the orthogonality of the concatenated vector ucr, this implies that also uc2r is orthogonal to all other uc2r vectors. Furthermore, orthogonality of Uc1R to Uc1(Q-R) or of Uc2R to Uc2(Q-R) yields a block-diagonal W matrix. As explained previously, when W is block-diagonal the GSVD yields an optimal approximation. The block-diagonality of W can be derived as follows: First, applying the orthogonality to Uc1TUc1,
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(A similar result can be obtained for Uc2TUc2).  Now for every symmetric block diagonal matrix, the eigendecomposition can obtained directly from the eigendecompositions  of the blocks. Specifically, let [A 0; 0 B]  be the block diagonal matrix in (16), and A=KLKT and B=MNMT then [A 0; 0 B]=[K 0;0 M][L 0;0 N] [K 0;0 M] T gives the eigendecompoisition of the block diagonal matrix. Second, note that W is the matrix of eigenvectors of Uc1TUc1 (and of Uc2TUc2): Uc1TUc1=( U1S1WT)T(U1S1WT) =WS1²WT.                                
The block- orthogonality does not hold for common components. Both for common and noise components the Ucr are of a non-specific structure and both type of components have length one. Because the GSVD decomposition relies on the SVD of the matrices Uc1 and Uc2 (see (5) and(6)), the common and noise components may be mixed up unlike the distinctive components that have a block-orthogonal structure. This explains the difference in performance of the GSVD for common (bad performance) and distinctive (good performance) processes.
3. Non-uniqueness problems

In this section we will show that the GSVD decomposition may not be unique for data that are not perturbed by noise. First we discuss the general case and then a particular case that we link to common and distinctive components in sections 4.1 and 4.2.

3.1. In general

The GSVD is also the SVD of X1X2+ with X2+ the generalized inverse. As the SVD is not unique in case of equal singular values, this implies that the GSVD is not unique in case of equal singular values for the derived matrix X1X2+ (note that these singular values are called the generalized singular values).

3.2. For data with a common matrix of right singular vectors
In case of data that can be decomposed by a SVD such that the matrix of right singular vectors is equal, non-uniqueness problems can be linked up to properties of the individual data matrices X1 and X2 instead of the derived data matrix X1X2+: As we will show, this is instructive for the particular case of common and distinctive components. X1 and X2 can thus be decomposed as follows,
X1=U1pS1pVpT                    

(17)

X2=U2pS2pVpT                    

(18)

with U1pTU1p=U2pTU2p=VpTVp=I.
We will use the subscript p to denote this special type of data and to make the distinction with the GSVD decomposition (see equations (1) and (2)). Now we inspect what happens upon applying Paige & Saunders GSVD algorithm to these data

. 







Step 1. 
To find the singular values and right singular vectors of the concatenated data, the eigendecomposition is used,
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The left singular vectors of these concatenated data can be obtained as follows: from the general decomposition (3), Xc=UcScVcT, it follows that Uc= Xc(ScVcT)-1=XcVcSc-1. For the specific case here, Xc=[(U1pS1pVpT)T (U2pS2pVpT)T]T with associated singular values 
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 and right singular vectors Vp (as shown by (21)) yielding left singular vectors 
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Step 2.

To find the structures U1 and S1 of the GSVD decomposition (see equation (1)), SVD of the block-specific parts of Uc is used. For the first block this is the SVD of
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Note that S1p(S²1p+S²2p)-1/2 is a diagonal matrix and that U1p is orthogonal. This immediately yields singular values  S1=S1p(S²1p+S²2p)-1/2 and U1=U1p. The same holds for the second block specific part:  S2=S2p(S²1p+S²2p)-1/2. Note that S1²+S2²=I. The SVD is not unique in case of equal singular values. Equal singular values in S1 (and thus also in S2), will occur when the special data here (see (19) and (20)) have proportional pairs (s1pi, s2pi) of singular values. We show this as follows: Let s1pi and s2pi be the values on position i; also, let c be a positive scalar and cs1pi and cs2pi the values on position j (j≠i), then the values on positions i and j in S1 are equal (and thus also those in S2):
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Note that this is the same as saying that the pairs (s1pi,s2pi) and (s1pj,s2pj) have the same ratio: s1pi/s2pi = cs1pi /cs2pi= s1pj/s2pj (or, the generalized singular values are equal).
Remark that although we discussed uniqueness problems for data with the structure in (19) and (20) relying on a particular algorithm, the results for these data hold in general: setting 
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, U1=U1p, U2=U2p, S1=S1p(S²1p+S²2p)-1/2 and S2=S2p(S²1p+S²2p)-1/2 yields the GSVD decomposition (see (1) and (2)) which is not unique in case of equal generalized singular values. 
4. Simulations to illustrate the theoretical results

4.1. Data with noise
In the main manuscript, it was stated that the performance of the GSVD deteriorates the more common components are present. There are two potential confounding factors that need to be addressed in order to make this general statement. First, in the paper only three simulated data cases are considered when discussing the performance in terms of the VAF so this might be a coincidence, and second, the true data have proportional singular value pairs which is problematic due to the uniqueness problems discussed in section 1.2.2. Therefore, we show here the results of a simulations study that includes many data cases and with data generated in a way that the singular value pairs are not proportional.

Generation of the data:
The simulated data were generated under a model that fits both the GSVD and DISCO-SCA decompositions:


X1=UR1SR1VRT+E1,

X2=UR2SR2VRT+E2,

with U1TU1=I, U2TU2=I, VTV=I, and with X1 of size 144×28 and X2 of size 44×28 and R=3. S1 and S2 are diagonal matrices defining whether the components are common (equal singular values: s1rr=s2rr) or distinctive (e.g., to impose a component that is distinctive for X1, s1rr is set equal to a substantial value and s2rr to zero). The following structure was used for the diagonal matrices:

 

diag(S1)=sqrt([     .40           (1-dd)*(.40)              .30          ]),

diag(S2)=sqrt([ (1-dd)*(.40)       .45          (1-dd)*(.30)+.01]),

with dd, the degree of distinctiveness, taking the following values: 1, 0.999, 0.99, 0.9, and 0. The values close to one yield a structure with one distinctive component for X2 and two for X1, values close to 0 yield a structure with all common components. E1 and E2 were generated from a normal distribution with mean zero and variance such that these residual matrices account for 0 percent, 5 percent, or 20 percent of X1 and X2 respectively. Both factors (degree of distinctiveness and error level) were crossed, resulting in 15 conditions, and for each condition 100 data sets were generated.
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Figure 2: Percentage of VAF accounted for by the GSVD. The different panels refer to different error levels; within each panel, boxplots are shown as a  function of different degrees of distinctiveness.

The percentage of VAF is displayed in Figure 2. The trend observed in the article is confirmed: when noise is present and the more common the components become, the worse the approximation of the data. The drop in VAF is quite large: only 20 percent is accounted for when all components are common. Also, already when the degree of distinctiveness is 0.9 (this is 10% of the variation of the component accounted for by the other data block than the one for which the component is distinctive), the performance is considerably affected. 
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Figure 3: Average Tucker congruence between the columns of the generated and recovered V matrix. The different panels refer to different error levels; within each panel, boxplots are shown as a function of different degrees of distinctiveness.
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Figure 4: Average Tucker congruence between the columns of the generated and recovered U1 and U2 matrix. The different panels refer to different error levels; within each panel, boxplots are shown as a function of different degrees of distinctiveness.

The recovery of the V matrix shows the same pattern as the VAF: in presence of error, the performance of the GSVD deteriorates the more common the components are. For the recovery of the U1 and U2 matrices, essentially the same trend is observed. However, for perfect distinctive data (degree distinctive = 1 and no error present), the recovery is not perfect. This can be explained by the fact that a distinctive component for X1 (X2) plays no role in X2 (X1) such that the associated values in U2 (U1) are arbitrary. For the same reason, in the panels with error the performance for a degree of distinctiveness equal to 1, the performance is less than for the neighbouring degrees 0.999 and 0.99.

It can be expected that the performance of the GSVD for common components will strongly depend on the number of noise components: The more noise components enter the analysis, the higher the chance that the common directions will correlate with a/some noise directions. We confirmed this in a simulation with 3 common components with clearly non-proportional singular values s1pi and s2pi:

S1=sqrt([.55 .40 .25])
S2=sqrt([.40 .40 .35])
The factors manipulated are the number of data columns (3, 4, 5, 6, 8, 11, 15, 20, and 30) and the error level (0.1%, 5%, and 20%); see Figure 5. Striking is the observation that the amount of error barely seems to have an influence; even with only 0.1 percent of error but a higher rank of the observed than the model data, the performance deteriorates drastically.
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Figure 6. Total percentage of VAF by the three GSVD components with highest VAF for three error levels (the three panels) and a different number of data columns.

4.2. Uniqueness problems 
Next we give three randomly generated examples (relying on the model described by equations (16) and (17) with matrices X1 and X2 of the same size 144×28 and 44×28 respectively) of uniqueness problems due to proportional pairs of singular values: A first example is general, the second and third example pertain to common and distinctive components.

In Table 1, an example is summarized for data with R=5 components and where the fourth and fifth component have proportional singular values. The imposed singular values s1pi and s2pi are summarized by the columns ‘True VAF X1/X2’ and are reported for each of five components (the lines C1-C5). Components four and five have proportional pairs of singular values: s1p4/s2p4=0.5=s1p5/s2p5. The values recovered by the GSVD can be found in the columns labeled ‘GSVD VAF X1/X2’: As can be seen, for the fourth and fifth component, the true values are not recovered.
Table 1. Proportion of VAF in each data block by each of five components (the lines C1-C5) and in total (the TOTAL line) as imposed on the data (the columns TRUE VAF) and as reproduced by the GSVD (the columns GSVD VAF).
	
	TRUE VAF X1
	TRUE VAF X2
	GSVD VAF X1
	GSVD VAF X2

	C1
	0.4000 
	0.3100 
	0.4000
	0.3100

	C2
	0.3000 
	0.2900 
	0.3000
	0.2900

	C3
	0.2000 
	0.2000 
	0.2000
	0.2000

	C4
	0.0800
	0.1600 
	0.0705
	0.1409

	C5
	0.0200 
	0.0400 
	0.0295
	0.0591

	TOTAL
	1.0000
	 1.0000
	1.0000
	1.0000


Perfect common and perfect distinctive data have proportional components. 1) For perfect common data, the proportion of VAF, is the same in each data block yielding s1pi/s2pi=1 for all i. 2) For perfect distinctive data, the VAF in either X1 or X2 is zero. So, if two components are distinctive for X1, this gives two equal s1pi/s2pi=∞; if two components are distinctive for X2, this gives twice s1pi/s2pi=0. Table 2 shows the results for perfect common data (R=4): Only the first component is recovered. Table 3 shows the results for perfect distinctive data (R=4) and there only the distinctive components for X1 are recovered (which is probably an algorithmic coincidence; in general it can be expected that also these distinctive components are not recovered).
Table 2. Proportion of VAF in each data block by each of four components (the lines C1-C4) and in total (the TOTAL line) as imposed on the data (the columns TRUE VAF) and as reproduced by the GSVD (the columns GSVD VAF).
	
	TRUE VAF X1
	TRUE VAF X2
	GSVD VAF X1
	GSVD VAF X2

	C1
	0.5000 
	0.5000 
	0.5000 
	0.5000 

	C2
	0.3000 
	0.3000 
	0.1918 
	0.1918 

	C3
	0.1900 
	0.1900 
	0.1853 
	0.1853 

	C4
	0.0100 
	0.0100 
	0.1230 
	0.1230 

	TOTAL
	1.0000
	 1.0000
	1.0000
	1.0000


Table 3. Proportion of VAF in each data block by each of four components (the lines C1-C4) and in total (the TOTAL line) as imposed on the data (the columns TRUE VAF) and as reproduced by the GSVD (the columns GSVD VAF).

	
	TRUE VAF X1
	TRUE VAF X2
	GSVD VAF X1
	GSVD VAF X2

	C1
	0.0000 
	0.7000 
	0.7000 
	0.0000 

	C2
	0.7000 
	0.0000 
	0.0000
	0.6534

	C3
	0.0000 
	0.3000 
	0.0000 
	0.3466

	C4
	0.3000 
	0.0000 
	0.3000
	0.0000

	TOTAL
	1.0000
	 1.0000
	1.0000
	1.0000


Does the addition of noise to the data solve the uniqueness problem?
We focus here on distinctive data. Because the addition of noise will disrupt the perfect structure, the distinctive components can be expected to have ratios s1pi/s2pi different from zero or infinity. On the one hand, this solves the uniqueness problem but, on the other hand, this may yield arbitrary solutions (in the sense that they are dominated by noise effects) that are far from the true underlying structures. To answer the question whether the addition of noise helps to recover the true underlying structure, we performed a small simulation study.
The data were generated according to the procedure described in the paper but now using randomly generated data to derive the matrices U1, U2, and V. We consider the situation with only distinctive components (3 for X1 and 3 for X2). The noise level was manipulated from zero (no noise) to 20 percent noise. For each level, 100 datasets were generated (this is, generating new U1, U2, V, E1, and E2). 
As a measure of performance we used the average Tucker congruence between columns of generated V and recovered V, and between columns of generated U1 and U2 and recovered U1 and U2 (in the latter case, the two Tucker congruence values are averaged over U1 and U2). Tucker congruence between true matrix A and recovered matrix B was calculated as follows:
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(21)
after accounting for permutations and reflections. 

The results are summarized in Figure 1: the reconstruction of the data is good; however, the recovery of the underlying structures is not good both for the V matrix as well as the U1 and U2 matrices. Note that for the V matrix, Tucker congruence is quite high but given that most error percentages are extremely low, they are not satisfactory. In case of U1 and U2, the values are overall low. The most important observation is that the addition of noise does not improve the recovery.
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Figure 1: Box plots of total VAF (left panel) and Tucker’s coefficient of congruence (middle panel: V matrix; right panel: average for U1 and U2 matrices) in function of the error percentage.

5. Adapted GSVD algorithm
It can be easily seen that adapting the GSVD algorithm in the following way, yields the least squares approximation of the concatenated data: Namely, limiting Uc in (4) to the R vectors associated to the R largest singular values; another approach yielding the same results is to apply the unadapted algorithm of Paige & Saunders or another rank-determining GSVD algorithm to data that are derived from the rank R approximation of the concatenated data (see also Friedland, 2005). In fact, the GSVD can then be considered to become a simultaneous component decomposition (step 1 of the algorithm) with additional transformation (steps 2a and 2b). In case the columns refer to the variables, this additional transformation is a rotation and the difference between GSVD and DISCO-SCA then mainly resides in a different rotation criterion. This can be seen as follows.

1. DISCO-SCA starts with SVD of Xc=[X1T X2T]T=UcScVcT and the block-specific structure T is set equal to UcR=[UcR1T UcR2T]T, the shared structure P to VcRScR. Then T is rotated by a matrix B and P is counterrotated by B.

2. GSVD starts with SVD of Xc=[X1T X2T]T= UcScVcT.

Then, in step 2a of the GSVD algorithm, UcR1 is decomposed: UcR1=U1S1WT and in step 2b UcR2=U2S2WT. Note that [(U1S1)T (U2S2)T]T= UcRW so the components  U1S1 and U2S2 which can be computed from the U1, U2, S1 and S2 resulting from steps 2a and 2b can be considered to be a rotation of UcR by W. The shared structure V in the GSVD equals VcRScRW which incorporates the counter-rotation of VcRScR.

The results are summarized in Table 4 to clearly show that the only difference between the methods is a difference in rotation: DISCO-SCA rotates to a partially specified target that defines distinctive components by all zero scores (for the other matrix than the one for which the component is distinctive) while GSVD rotates to directions of which the first one accounts for maximal variation in UcR1 and each subsequent one for the maximal remaining variation. This is for the case the columns refer to the variables (common variables). 
Table 4: Comparison of DISCO-SCA and the adapted GSVD algorithm for the case of common variables. UcR and VcR are the R singular vectors corresponding to the R largest singular values ScR of the concatenated data. B and W are rotation matrices.

	
	Shared structure
	Block-specific structure

	DISCO-SCA
	VcRScRB
	UcRB

	Adapted GSVD
	VcRScRW
	UcRW


Interestingly, Timmerman and Kiers (2003) proposed a simultaneous component model (called SCA-IND) for data blocks with a common set of variables that has the following SCA structure:
X1=T1PT                       (22)
X2=T2PT,                      (23)
under the constraints X1TX1=PD1²PT and X2TX2=PD2²PT with D1 and D2 diagonal matrices. Estimation of this model is done in a least-squares framework with D1²+ D2²=I (in order to identify the solution). For the (adapted) GSVD decomposition, it holds that X1TX1=VS1U1TU1S1VT=VS1²VT and, likewise, X2TX2=VS2²VT with S1²+S2²=I. This clearly shows that SCA-IND and the (adapted) GSVD impose identical structures on the data blocks X1 and X2.
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MATLAB CODE
1. GSVD and adapted GSVD algorithm

function [U,V,C,S,X]=gsvdR(A,B,R,full)
%GSVDR GSVD algorithm with possible least squares approach to [A' B']'
%The algorithm is the one proposed by Paige and Saunders (1981) if
%full='yes'; else, it gives the least squares approximation to the
%concatenated data [A' B'] (see Friedland, 2004)
%INPUT: A: first data block
%       B: second data block with same number of columns as A
%       R: the desired rank of the approximation
%       full: 'yes' or 'no' to indicate whether the ordinary GSVD is wanted
%              ('yes') or the adapted GSVD with rank R approximation ('no')
%Author: Katrijn Van Deun
[m,n1]=size(A);
[p,n2]=size(B);
if n1==n2
    n=n1;
else
    fprintf('The data should have the same number of columns \n');
    U=[];
    V=[];
    C=[];
    S=[];
    X=[];
    return;
end;
%Step 1
[P,R0,Q]=svd([A;B]);
nonzerosigma=find(diag(R0)>1e-12);
switch full
    case 'yes'
        k=size(nonzerosigma,1); 
        fprintf('Rank of concatenated data is %3.0f \n',k)
    case 'no'
        k=R;
end;
%Step 2a
P11=P(1:m,1:k);
[U SA W1]=svd(P11);
C=SA;
%Step 2b
P21=P(m+1:m+p,1:k);
[VB SB W]=svd(P21);
kr=min([p k]);
S=zeros(p,k);
S(p:-1:p-kr+1,k:-1:k-kr+1)=SB(1:1:kr,1:1:kr);
V=P21*W1*pinv(S);
Z=zeros(k,n-k);
X=[W1'*R0(1:k,1:k) Z]*Q';
2. Partially specified target rotation

function [B Loss]=pstr(T,Target,W,maxiter,convergence)
%PSTR finds a (orthogonal) rotation to a to zero partially specified target
%The following objective function is used (Browne, 1972):
%       min_B ||Wo(TB-Target)||²
%with here W a binary matrix of weights, T the matrix to rotate and Target the
%target to reach. There is no problem of reflections due to the restriction
%that the specified numbers are zeros.
%The procedure to minimize the weighted least squares problem implements
%the iterative majorization algorithm proposed by Kiers (1997).
%INPUT   T: matrix to rotate
%        Target: target to reach
%        W: weight matrix (0/1 for resp. unspecified and specified elements of the target)
%        maxiter: stop criterion based on maximum number of iterations
%        convergence: stop criterion based on difference in loss between current and previous iteration
%OUTPUT  B: an orthogonal rotation matrix
%
       Loss: value of the loss function at termination
%

%Author: Katrijn Van Deun

 [n m]=size(T); 
L=[];
BMAT=[];
Bcurrent=eye(m);
Lossc=pstrLoss(Bcurrent,T,Target,W);
B1=T'*T;
alpha=max(eig(B1));
iter=1;
stop=0;
while stop==0
    Tw=T*Bcurrent-W.*(T*Bcurrent);
    A=-2*Tw'*T;
    F=A+2*Bcurrent'*B1'-2*alpha*Bcurrent';
    [U S V]=svd(-F);
    B=V*U';
    if iter==maxiter
        stop=1;
    end;
    Loss=pstrLoss(B,T,Target,W);
    Diff=Lossc-Loss;
    if abs(Diff)<convergence
        stop=1;
    end;
    fprintf('Iteration Nr: %3.0f \t Loss: %5.4f \t  Diff: %5.4f \n',iter,Loss,Diff);
    iter=iter+1;
    Lossc=Loss;
    Bcurrent=B;
end;

function Loss=pstrLoss(B,T,Target,W)
%pstrLoss calculates the objective function associated to the pstr function
%
%Author: Katrijn Van Deun
DEV=T*B-Target;
wDEV=W.*DEV;
Loss=sum(sum(wDEV.^2));
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