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SUPPLEMENTARY TEXT 

I- Definitions of acronyms used in the manuscript 

The acronyms used in this manuscript are defined in Table S1. 

 

II- Theoretical Framework for Crowd-sourced Malaria Diagnosis Game 

In this section we will describe the theoretical framework with which we have approached the 

problem of fusing the data from multiple individuals playing the game. In doing so, we used 

communications and probability theory based methods. 

Binary Channel Model for Gamers Diagnosing Red Blood Cells: Since we are attempting to 

combine decisions that are received from many gamers, we will be feeding them the same set 

of images to label. Therefore, there is a single sequence of images to be labelled, and each 

gamer will output a decision sequence. Ideally, the output of each gamer yields the correct 

diagnostic labels for the blood cell images. Given that each image either corresponds to a 

healthy cell or an infected cell, we can use binary labels to identify them: 0 for healthy and 1 for 

infected. Recasting our setup as a communications system, our server will act as a broadcaster 

of a binary sequence and each gamer will act as a noisy Binary Channel 1, retransmitting the 

symbols back along with some errors (see Figure 3 of Main Text for further details). Note that 

since the gamers may not necessarily make mistakes symmetrically, the probability of a gamer 

mislabelling a healthy cell may be different from that of mislabelling an infected cell. 

System Overview: We model the framework of our games as a communications system 

consisting of a broadcast unit, multiple repeaters, and a receiver/decoder as shown in Figure 3 

of the Main Text. In the ideal scenario, the repeaters (i.e., the gamers) would simply receive a 

set of incoming symbols (images to be diagnosed) from the broadcast unit, and transmit them 

to the receiver/decoder block, which in turn combines and stores the decisions (image labels). 

Broadcast Unit - The Source of the Microscopic Images: We can model the source of our 

microscopic images as a broadcast unit. In this analogy, the cell images are essentially treated 

as binary symbols. We assume the equivalency of the two image classes infected and healthy 

with binary symbols 1 and 0 respectively.  

The sequence of symbols          is broadcast to   repeater units (i.e., the gamers within the 

crowd) that can be viewed as   parallel noisy channels (see Figure 3 of Main Text). To be able 

to decode the outputs of these channels reliably, it is necessary to learn the channels 

adaptively. As such, it is crucial to embed some known symbols (i.e., control images) in the 
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output of the broadcast unit. Knowing the binary value of certain symbols/images at specific 

times, we can learn the conditional probabilities           as more symbols are transmitted by 

the broadcast unit and passed through the repeaters/gamers. 

Additionally, an encoder unit can also be placed after the broadcast unit to increase the 

redundancy of the transmission, and allow for error correction at the decoder. 

Gamers as Repeaters in the Communication System: Each gamer is modelled as an 

independent repeater that behaves as a binary channel (see Figure 3 of the Main Text). We 

define the error probabilities using the notation          , corresponding to the probability that 

the     user will output the symbol    when observing the symbol    (i.e.     image). In general 

the error probabilities are asymmetric, i.e.,          is not the same for different values of  . 

However, it is difficult to accurately estimate this asymmetric probability in our games due to 

the imbalance in the existence of positive and negative training data (which is true not only for 

malaria diagnosis but also for various biomedical image analysis/diagnosis problems such that 

disease signatures are relatively rare compared to healthy data) which causes a bias towards 

better estimating the error probabilities when     (healthy case). In addition to this, another 

practical limitation is due to the general infeasibility of embedding large numbers of training 

images within the game. It is therefore more straightforward to estimate a simpler bit-flip 

probability, assuming a Binary Symmetric Channel (BSC)1. It was observed in our experiments 

that a BSC model performs better than an asymmetric model. This observation stems from the 

fact that there is an inherent imbalance in the number of positive and negative image samples. 

Since we are using a limited number of control images to estimate the probability densities of 

the gamers’ performances, this imbalance in the control data translates to having a small 

number positive samples for accurate estimation of    and    . 

Error Control Coding (ECC) in Malaria Diagnosis Games: Similar to traditional communications 

systems, our broadcast unit can also include an encoder to increase the information 

redundancy prior to transmission to the repeaters/gamers. Given that the symbols being 

transmitted by the broadcast unit are not known a priori, the only appropriate coding scheme is 

the repetition code, where each symbol is repeated for an odd number of times prior to 

transmission. At the decoder, a majority vote is taken on the channel outputs.  

Leaving the communications system analogy, an ECC amounts to asking the gamer to play each 

image an odd number of times, and the most frequently assigned label is taken to be his or her 

answer for that particular image. This can also be interpreted as the gamer’s confidence in the 

given diagnosis response. In other words, if the gamer is absolutely sure of a particular 

diagnosis for an image, then he or she will choose the same label on every observation. 

However, if the image is difficult to diagnose, then there is the chance that the gamer would 

not be consistent in making a decision, thus producing a lower confidence level. 
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Decoder for fusing Gamers’ Decisions toward Malaria Diagnosis: In designing the decoder for 

our gaming platform, we take a Maximum a Posteriori Probability (MAP) approach. Suppose 

that we have   symbols/images         being broadcast and relayed through     

repeaters/gamers and are received by the decoder. Also assume that we have estimates of the 

repeater/gamer error probabilities           for the     repeater and the     symbol. We then 

would like to estimate    given all the repeater outputs   
      

  (see Figure 3 of the Main 

Text). For a particular transmitted symbol    we have:  

 

We can then have: 

 

 

The value of    is taken to be    that maximizes the above posterior. Therefore, we have: 

 

 

Automated Malaria Diagnosis using Machine Vision: In addition to the gaming and the crowd-

sourcing platform described earlier, we also developed an automated machine-learning-based 

algorithm to detect the presence of malaria parasites (i.e., P. falciparum). In doing so our aim 

was to ultimately create a hybrid system such that machine vision and human vision can be 

coupled to each other to create a more efficient and accurate diagnostics platform as illustrated 

in Figure 4 of the Main Text. 

 

Toward this end, instead of developing a very specific machine vision algorithm that is only 

applicable to malaria diagnosis we opted to create one that could potentially be also applied to 
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other infections that may have different visual properties. As such we developed a machine 

learning algorithm that extracts local colour features from cell images and feeds them into a 

classifier. In training the classifier, we used a small subset of the cell images in our dataset 

(same images that are embedded as ‘control images’ in the game) as the training set. We then 

used a variation of Adaptive Boosting 2,3 to create an ensemble of relatively weak classifiers that 

together produce accurate classification results as detailed in our Results section of the Main 

Text. For further details of our machine-learning based malaria diagnosis algorithm, please refer 

to the Section III of this Supplementary Text. 

Hybrid (Machine + Human) Diagnosis Framework: As briefly pointed out earlier, the two 

discussed diagnosis methodologies (crowd-sourced gaming and machine vision) naturally lend 

themselves to a third hybrid diagnostics platform (see Figure 4 of the Main Text) where the 

images are initially processed by automated machine vision algorithms with a measure of 

confidence for each diagnostics decision. Images for which the machine decisions are not above 

a certain threshold (e.g., T) are then passed on to the human gamers to be re-diagnosed by the 

crowd. As demonstrated in our Experiment #4 of the Main Text, this can significantly increase 

the efficiency of the human gamers, since only those images that are deemed as “difficult-to-

diagnose” by the machine vision algorithm are passed to the gamers, allowing the same 

number of gamers to assist in e.g., the diagnosis of more blood smears and patients per unit 

time. 

III- Details of our Automated Recognition Algorithm for Malaria 

Parasites 

In this manuscript our focus with regards to machine learning algorithms was to develop a 

general methodology such that it can also be applied to other parasites or disease signatures 

beyond malaria with small modifications in the visual features used for analysis. Therefore, in 

addition to the gaming based crowd-sourcing platform, we also developed an automated 

machine learning algorithm to detect the presence of malaria parasites, which helps us to 

compare our gaming platform’s diagnosis accuracy to state-of-the-art machine vision 

algorithms as well as to ultimately create a hybrid system such that machine vision and human 

vision can be coupled to each other to create a more efficient and accurate diagnostic platform 

as illustrated in experiment #4 of the Main Text. In the next sub-sections we will go over some 

details of our algorithm. 

 

Selection of Image Features for Recognition of Malaria Parasites: On a thin blood smear, 

malaria parasites are usually stained with Giemsa stain and are digitally imaged under a 
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brightfield microscope using a 100X oil-immersion objective lens. Giemsa stains the nuclear 

material in the parasite with a blue tint, and does not affect the RBC morphology. 

In general, there are two possible approaches in extracting features from the acquired 

microscope images for the purpose of building a digital classifier. One can either attempt to 

extract very specific, hand-coded features or try to learn discriminative features from a large 

set of training examples. The advantage of using hard-coded features is that we can use prior 

knowledge of the physical/structural properties of the parasites. For example, we can look for 

“ring-shaped objects” within the RBC image as an indicator for the existence of the parasite. 

The advantage of using such features is that they lend themselves to very fast implementations 

and make the job of the classifier much easier. On the other hand, they are difficult to design, 

and are in general very inflexible to variations in sample preparation or illumination/recording 

conditions. For example, custom-designed malaria feature-sets that use shape and colour may 

not be easily modified to detect a different parasite type. 

In contrast to hand-coded features, ‘learned’ features can be very generic and easily modified 

and applied to similar detection problems. They also take less time and effort to design for a 

particular problem, and put most of the burden of classification on the classifier itself. In this 

work, we preferred the second approach (i.e., learned features) and used a set of generic 

colour-based features for training a classifier to discriminate between RBC images that contain 

P. falciparum and those which do not. 

We used two types of histogram-based features as input to our classifier. The first is a simple 

colour histogram of the image in grayscale. This is a feature that carries information about the 

general distribution of image values. We used a second, more complicated colour feature which 

we dubbed Local Colour Peak Histograms (LCPH). The LCPH for an image is formed by first 

generating highly quantized colour histograms in the Hue-Saturation space over local windows. 

For each window the two most occurring histogram bins are found. Any given pair of bins 

corresponds to a particular index value. In other words, an index can be assigned to the 

occurrence of each pair of values in the histogram, and this is the value that is recorded for 

each local window in the image. A second histogram is generated over the recorded indexes of 

all the local windows and used as the LCPH features. This feature essentially measures the 

relative occurrences of various colour pair co-occurrences throughout the image (see Error! 

Reference source not found.). 

In addition to the above mentioned colour-based features, we used a number of more basic 

image features such as mean, variance, and gradient magnitude histograms to form our final 

feature vectors. 
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Classifier Training: In training our malaria classifier, we used a variation of Adaptive Boosting 2,3 

and trained many weak decision-tree classifiers that together can produce a very strong 

classifier. In classical Adaptive Boosting, the overall classifier is tested on the complete training 

dataset at each iteration. Data points that are not correctly classified are then assigned larger 

weights for the next classifier to be trained. This is where we deviate from the classical 

algorithm in that instead of re-weighting the full training set and training a new classifier, we 

use the weights to probabilistically select a small subset of the training data for the next weak 

classifier to be trained. This allows for completely disjoint training data for the weak classifiers 

and results in very fast convergence of the boosted classifier. Refer to Algorithm S1 shown 

below for further details of our implementation. 

 

 

Algorithm S1 Summary of our Adaptive Boosting Algorithm. The total number of training points 

is fixed for each weak classifier, i.e., for each weak classifier a total of    training vectors are 

chosen based on the weights      . 

IV- Detailed analysis of gamers’ performance 

Detailed analysis of our largest gaming experiment (#5 - see Table 1 of the Main Text) is shown 

in Figures S2 and S3.  

 

V- Sources of our Microscopic Data 

The RBC images used in this work were obtained from multiple sources, which is quite 

important as it mimics a real-life scenario where various different optical microscopes located 
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at e.g., point-of-care offices and malaria clinics would be used in our gaming based diagnosis 

platform. The bulk of the images were captured using an in-house optical microscope with a 

100X oil-immersion objective lens (numerical aperture: 1.25). Roughly 5% of the positive 

images and 10% of the negative images were also obtained from Center for Disease Control 

(CDC) database. Figure S4 shows representative images demonstrating the colour, illumination 

and background variability observed among these RBC images that were used in our crowd-

sourced games. 
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