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Supplemental Material 
 
Double digest RADseq: Preliminary expectation 
To generate an approximate expectation for our ddRADseq pilot experiments, we created an 
expected distribution of restriction fragment sizes from Mus musculus (Ensembl release 61, 
NCBI M37) Rattus norvegicus (Ensembl release 61, RGSC 3.4) and Spermophilus 
tridecemlineatus (Ensembl release 61, SQUIRREL) by positing a break at each genomic 
sequence matching the recognition site for either of two restriction enzymes (REs). We retained 
only those fragments with one of each restriction site, i.e. those generated by double digest (as 
only these fragments will be sequenced; see protocol). We eliminated “peaks” in this distribution 
derived from RE sites in high-copy repeats by matching and removing resulting sequences 
using RepeatMasker 3.2.7 with the “mammal” and “rodentia” repeat databases. From resulting 
size distributions, we summed counts over proposed size selection windows with mean 200, 
300 or 400, and widths of +/- 25bp and +/- 50bp. We used recognition sites for the following 
REs in pairs: SbfI (8bp site, 75% G/C), SphI (6bp site, 66% G/C), EcoRI (6bp site, 33% G/C), 
MspI (4bp site, 100% G/C, contains CpG), NlaIII (4bp site, 50% G/C), MluCI (4bp site, 0% G/C). 
These enzymes were selected because they span the available range of recognition sequence 
length and G/C composition, and because they all exhibit 100% activity in NEB Buffer 4 (NEB, 
Ipswitch, MA), allowing all double digest combinations. Resulting fragment size distributions and 
therefore resulting fragment numbers in each proposed size-selection window were extremely 
similar across the three rodent genomes; all subsequent analyses used the Mus genome. 
 
Double digest RADseq: modeling simulation 
We treat the question of region recovery as a function of read depth d in a given digest and 
sizing condition as a series of d random draws of from the observed distribution of fragments of 
each size (fragment size distributions as per “preliminary expectation” above) with probability of 
recovering a fragment of that size determined by a Normal sampling distribution of mean equal 
to our size selection mean and standard deviation s. To obtain s, the actual standard deviation 
of our size sampling distribution in our experimental data, we compared simulations to real data 
derived from individuals of several species of deer mouse (genus Peromyscus, which diverged 
from Mus approximately 25 Mya [1] representing approximately 40% divergence in non-coding 
sequence [data not shown]). Sequence data were generated using EcoRI - MspI digests, and 
were size selected either by “narrow” Pippin Prep selection (set at 300 ± 24bp), a “wide” Pippin 
Prep selection (set at 300 ± 36bp), or agarose gel slab excision at 300bp of approximately 50-
100bp total width. Simulations were run over a range of total read counts matched to real data 
and with s from 1 to 100 (figure S1). We observed very reproducible best fits to both Pippin Prep 
conditions across pools with average s = 11.5bp (r2 0.99) for the “narrow” sizing and s = 17.5bp 
(r2 0.98) for the “wide” sizing.  Gel excision best-fit s values varied from 20-40bp (r2 0.94), but 
were not reproducible across pools.  
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Because reduced representation libraries are expected to consist of primarily fragments derived 
from the peak of size selection efficiency along with less prevalent random inclusion of 
fragments at increasing size deviation from the sizing mean, region recovery and read coverage 
is expected to be best correlated between individuals and experiments for regions coming from 
peak size selection efficiency. Therefore, while both real and simulated data show that per-
individual number of regions recovered is a function of read depth and continues to increase 
well beyond the total read counts sampled in our experiments, the average number of shared 
regions saturates quickly (main text figure 4, panels C, D). While in part this is due to poorly 
covered individuals reducing the calculated mean of shared regions for all individuals, mean 
shared region counts computed only on the most highly sampled data points (>200,000 reads in 
“narrow” Pippin Prep and >400,000 reads in “wide” Pippin Prep; figure S2) continue to show this 
effect of saturation of shared regions. 
 
Furthermore, mean shared region counts in these “saturated-only” subsets (figure S2) 
correspond well with the transition between exponential and logarithmic accumulation of new 
regions with additional sequencing investment seen in individual region counts in both 
simulation and real data (figures 4C, S3). This is consistent with the hypothesis that this 
transition corresponds to the saturation of regions lying between restriction sites at spacings 
well recovered by the size selection condition and the slow addition of randomly recovered 
fragments from the tails of the size sampling distribution (and which are not expected to be 
shared between individuals).  Furthermore, the observation that samples sized by gel excision 
do not appear to display the same saturation kinetics suggests that this saturation is a function 
of differential precision in size selection in the two methods. 
 
Saturation is characterized in both real and simulated data by the point at which the rate of 
change in recovered regions with additional sequencing ceases to drop (coming off of the peak 
rate of change at the switch from logistic to asymptotic increase), and we therefore report this 
value (convergence of the second derivative at zero; figure S3) in both the X axis (sequencing 
investment) and Y axis (recovered region count) in table 1 for a variety of source genomes and 
restriction enzyme pairs. 
 
Random shearing RADseq: simulation 
To compare expected recovery of regions at various read depths between double RE digest and 
random shearing RADseq approaches, we sought a pair of conditions that are expected to yield 
the same final genotyping depth (7x) sequence regions counts at approximately the same final 
target depth at saturation (as defined above and in figure S3) for ddRADseq, and as follows for 
random shearing RADseq. As most published work employing RADseq to date has used the 
SbfI restriction enzyme, we began by simulating recovery randomly from a number of fragments 
equal to twice the number of SbfI sites in the Mus musculus genome. We assume that the 
restriction digest is complete (i.e. all recognition sites for the enzyme are cut) and that shearing 
is random, and therefore that each SbfI recognition site in the genome produces two 
sequencing library ends (one in each direction from the cut site). A cut site is considered to be 
“recovered” from a simulated sample if either resulting end is sampled at or above 7x. As the 
other fragment resulting from that cut site is functionally redundant, each site is only considered 
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to contribute one region. The analysis summarized in figure S4 shows the number of regions 
expected to be recovered at or above 7x coverage from 20 or greater of 24 simulated 
individuals.  
 
For these simulations, random shearing RADseq showed the expected sharply cooperative 
transition (i.e. steep slope) from zero regions shared between intervals, to complete recovery of 
at least one region adjacent to each cut site in all or nearly all individuals. As 60,000 cuts 
generating 120,000 fragments require at least 840,000 reads perfectly evenly distributed to 
achieve 7x, an observed transition from essentially no shared region recovery to complete 
saturation between 800,000 and 1,400,000 reads in random sampling simulations is consistent 
with expectation. When scaled for genome size this is roughly the value reported in [2], in which 
Cutthroat Trout with a genome 75% the size of the Mus genome saw approximately 50% 
(~19,000 of ~40,000) of regions shared in 20 or more of 24 individuals at an average of 
~830,000 processed reads per individual, which in our simulations with Mus occurred at 
1,100,000 reads (corrected for genome size, this would correspond to 825,000 reads in 
Cutthroat Trout). 
 
Region recovery: ddRADseq vs. random shearing 
A RADseq library constructed with SbfI and random shearing (following [3]) from Mus musculus 
is expected to saturate at 1.3M reads, with 60,200 unique regions in 20 of 24 simulated 
individuals (see above). To compare recovery as a function of read investment between our 
double RE digest approach and random shearing, we employed our “wide” size-selection-
trained sampling model to a variety of double digest fragment distributions from the Mus 
musculus genome in search of a similar result. From these simulations we chose a ddRADseq 
experiment with SphI and MluCI and selecting 300bp ± 36bp. Simulations suggest this will 
saturate at 1.3-1.4M reads and yield 60,600 unique regions in 20 of 24 simulated individuals. 
While similar in coverage and shared region counts at saturation, the ddRADseq simulation is 
substantially more robust to fluctuations in coverage across individuals, yielding an expected 
~35,000 well-covered regions (58% of the set expected at saturation) shared across individuals 
at 700K total reads per individual (50% the expected read count for saturation). In contrast, the 
RADseq simulation suggests that fewer than 100 regions are expected to reach the 7x coverage 
required for genotype inference at 700K reads. While the RADseq simulations climb to 19,000 
(32% of final) expected shared regions at 1M reads (75% of saturation), at this read count 
ddRADseq is expected to have recovered nearly 50,000 (83% of total) shared regions (Figure 
S4). These properties of robustness to under-sampling and predictability of saturating read 
counts from simulation data permit design and execution of genotyping experiments with little 
waste. In our preliminary results with EcoRI and MspI in Peromyscus, the estimate of 300,000 
reads required to confidently sample 20,000-30,000 regions per individual appears accurate, but 
even those individual samples receiving fewer than half of the reads required to saturate 
recovery still shared thousands of high-coverage regions (Figure 4D, main text). 
 
Library Construction Summary 
ddRADseq library construction consists of five steps: annealing complementary oligonucleotides 
to form barcoded adapters P1 and P2, digesting genomic DNA with two REs, ligating P1 and P2 
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barcoded adapters onto the ends of digested fragments, size selecting from the ligation 
products, and PCR amplifying the remaining subset of fragments. To create adapters, we first 
annealed two sets of complementary, single-stranded oligos (Integrated DNA Technologies) in 
equimolar ratios in 1x annealing solution (see protocol). Annealing was accomplished by 
increased the temperature of this mixture to 97.5-C for 150 seconds, and then slowly cooling the 
mixture to room temperature. Genomic DNA for the RE digests was extracted either with an 
affinity column (DNeasy Kit, Qiagen, Valencia, CA) or through phenol-chloroform precipitation 
(performed using an Autogenprep 965 [Autogen, Inc., Holliston, MA] automated extraction 
machine), and all samples were RNAse treated. We performed each digestion at 37C for 3 
hours without a heat kill (hold at 4°C), and included 0.5-1ug genomic DNA quantified by 
fluorometry using Quant-It dye, (Invitrogen, Grand Island, NY), 2 Units EcoRI-HF, 40-100 Units 
MspI, 10X NEB Buffer 4 (NEB, Ipswitch, MA) and H2O, up to a total volume of 20-30ul (or 50ul 
reactions for double RE digests with 5ug input DNA). After the digests, we cleaned each sample 
with Agencourt AMPure XP magnetic beads (Beckman Coulter Genomics, Danvers, MA). For 
ligations, we combined 50-500ng of digested DNA based on pre-ligation concentrations, a 10-
fold excesses of adapters relative to the expected number of complementary restriction 
overhangs in the genomic fragments, and 20 Units of T4 DNA ligase and ligase buffer (NEB). 
We then added water up to a total volume of 40ul, incubated the reaction at 37°C for 30 min, 
and heat killed the ligase by incubating at 65°C for 10 min, followed by a slow cooling to room 
temperature. After ligations, samples were again cleaned with Agencourt AMPureXP beads. 
Next, we pooled samples and size-selected fragments by gel excision or by Pippin Prep (Sage 
Science, Beverly, MA). We then amplified size-selected fragments using a Phusion High-Fidelity 
PCR Kit (Finnzymes) for 10 cycles.  We performed multiple amplification reactions for each 
size-selected sample, each with 3-4ul template. We then pooled reactions, performed an 
Agencourt AMPureXP bead clean-up, and measured final concentrations on a Bioanalyzer 
(Agilent, Santa Clara, CA). 
 
These libraries do differ from standard Illumina libraries in one respect that bears consideration: 
the Illumina platform requires that the in-line barcodes (i.e. adapter barcodes) pooled for an 
experiment be base-composition-balanced at each position. For example, barcodes ACGT, 
TACG, GTAC, CGTA make a suitable pool because each base position in the pool has all four 
nucleotides in equal quantities (assuming pooling of equivalent molar quantities of each 
barcode), By contrast, although barcodes ACGT, ATCG, AGTC, AGCT are unique sequences, 
this pool is invalid as only Adenine is present in base position one. Thus, when composing pools 
of barcodes to combine, it is important to use sets of barcodes that yield balanced compositions 
of all four nucleotides in each sequence position. 
 
Genotyping in a laboratory generated cross: Linkage map construction 
The following procedures were all conducted using the R/qtl software package [4] to generate a 
linkage map for a genetic cross between P. maniculatus and P. polionotus (strains as described 
in [5]). First, we imported genotypes from 192 backcross offspring that were either homozygous 
for P. maniculatus allele or heterozygous, having both P. maniculatus and P. polionotus alleles. 
We excluded homozygous P. polionotus genotypes because, given our cross design, these are 
probably located on the P. polionotus Y-chromosome, influenced by segregation distortion or 
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are erroneous genotypes (only a small fraction of all genotypes were homozygous for P. 
polionotus alleles = 2,131/316,412). Second, we estimated the pairwise recombination 
frequencies between all pairs of markers using the “est.rf” function. Third, we organized 
autosomal markers into linkage groups with the “formLinkageGroups” function. Setting the min.rf 
and max.lod parameters to 0.08 and 9, respectively, separated all markers into 60 linkage 
groups, 25 of which contained more than 5 markers. Since remaining groups were composed 
primarily of markers with many missing genotypes, we retained only the largest 25 linkage 
groups for further analyses. Finally, after examining by eye the recombination frequencies and 
LOD scores for linkage between all markers, we were able to confidently collapse our dataset 
into 24 total linkage groups, which is consistent with the haploid karyotype both P. maniculatus 
and P. polionotus. 
 
To determine the order of markers within each linkage group, we initially used the 
“orderMarkers” function. This function uses a computationally fast algorithm to minimize the 
number of crossovers (or maximize the likelihood) of marker order within a sliding window. 
Using a window size of 6 markers provided a good order for most linkage groups. However, the 
“orderMarkers” function is biased toward examining markers with the most complete genotype 
information first. This bias can create blocks of incorrectly ordered markers when data sets have 
either large numbers of markers or the chosen window size is not sufficiently wide. We 
identified, by eye, several regions with suspect orders and manually moved these markers. We 
then used the ripple function to minimize the number of crossovers on the modified linkage 
groups. These modifications resulted in a set of well-ordered linkage groups, with a minimized 
number of total crossovers per chromosome and low frequencies of recombination between 
adjacent markers) (figure 5A,B). Finally, we estimated the genetic distances between all 
markers using the est.map() function. Analyzing all 1,110 remaining markers with the kosambi 
map function produced a densely covered, sex-averaged map with a total length of 1,759.7cM 
and an average intermarker distance of 1.6cM (figure 5B). The total length of our map is 
comparable to other rodents with known genetic map lengths, such as Mus and Rattus [6]. 
 
Genotyping in a wild population: Peromyscus leucopus sampling 
We collected 92 P. leucopus DNA samples from four states: (1) Tensas Parish, Louisiana (326' 
16.260" N, 91°29'50.640" W; N=55), (2) La Salle Parish, Louisiana (31°29'42.000" N, 
92°0'42.180" W; N=16) (2) Cherry Co., Nebraska (Site 1: 42°53'25.920" N, 100°31'5.460" W, 
N=1; 1 voucher specimen MCZ66476; Site 2: 42°51'5.640" N, 100°31'14.280" W; N=5; 5 
voucher specimen MCZ66485, MCZ66491, MCZ66494, MCZ66497, MCZ66502; Site 3: 
42°42'42.360" N, 100°37'6.300" W, N = 1; 1 voucher specimen MCZ66607), (3) Westmoreland 
Co., Pennsylvania (40°8'45.600" N, 79°16'8.400" W; N=3), and (4) Middlesex Co., 
Massachusetts (42°22'11.34" N, 71°6'25.18" W; N=4; 2 voucher specimen MCZ63293-63294). 
In addition, P. leucopus originally derived from the Peromyscus Genetic Stock Center colony 
(N=5,collected near Linville, North Carolina) were included in our analysis. We generated an 
allele frequency spectrum from the Tensas Parish, Louisiana population (figure 5C). A genetic 
principal component analysis was run with the remaining wild-caught and lab-reared individuals 
(figure 5D). 
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Supplemental Table 1.  Read Counts by Lane, Pool and Index.  Reads generated are 
reported by size selection pool (3 – 48 barcoded individual samples each; see Sample Count). 
Run type indicates paired-end or single-read sequencing. Where applicable, Multiplex index 
indicates the standard Illumina multiplexing read index used. Pool reads indicates the number of 
reads uniquely assigned to individuals in each pool (by inline barcode and multiplexing index as 
indicated; see “Sample multiplexing via combinatorial indexing” in methods). Total number of 
reads for each lane, total number of reads uniquely assigned to individual samples, and rate of 
assignment success are summarized under Lane Totals. 
  

Flowcell Lane Run,Type Multiplex,Index Size,Selection,Pool Pool,Reads Sample,Count Mean,Reads,Per,Sample
100617 8 PE None HFparents 15800310 8 1975038.8
100617 8 PE None 1 2557405 3 852468.3 Total,Reads 23,811,226:::::::::::::::::
100617 8 PE None 3 2289092 6 381515.3 Assigned,Reads 22,944,902:::::::::::::::::
100617 8 PE None 2 2298095 6 383015.8 Assignment,Rate 96%
100507 3 SR None 1 3922069 8 490258.6
100507 3 SR None 3 3590076 8 448759.5
100507 3 SR None 2 3152646 8 394080.8
100507 3 SR None 5 3085189 8 385648.6 Total,Reads 19,649,924:::::::::::::::::
100507 3 SR None 4 2967611 8 370951.4 Assigned,Reads 19,475,849:::::::::::::::::
100507 3 SR None 6 2758258 8 344782.2 Assignment,Rate 99%
101013 7 SR None 1 4542792 12 378566
101013 7 SR None 3 4169598 12 347466.5 Total,Reads 19,777,269:::::::::::::::::
101013 7 SR None 2 5886668 12 490555.7 Assigned,Reads 19,671,663:::::::::::::::::
101013 7 SR None 4 5072605 12 422717.1 Assignment,Rate 99%
101029 7 SR None 1 3284793 11 298617.5
101029 7 SR None 3 3239037 12 269919.8 Total,Reads 25,631,225:::::::::::::::::
101029 7 SR None 2 9194077 13 707236.7 Assigned,Reads 25,437,980:::::::::::::::::
101029 7 SR None 4 9720073 12 810006.1 Assignment,Rate 99%
110927 1 SR 1 1 12965322 12 1080443.5
110927 1 SR 1 3 14739468 12 1228289
110927 1 SR 1 2 13640244 12 1136687
110927 1 SR 1 4 14485373 12 1207114.4
110927 1 SR 5 EK5 59314298 48 1235714.5 Total,Reads 233939689
110927 1 SR 6 EK6 56940414 48 1186258.6 Assigned,Reads 221,189,445:::::::::::::::
110927 1 SR 7 EK7 49104326 48 1023006.8 Assignment,Rate 95%

Lane,Totals
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Supplemental Figure 1. Goodness-of-fit of simulation to real data across sampling 
distribution standard deviations illustrates precise and repeatable size selection using 
Pippin Prep automated size selection.  Horizontal lines in the heatmap correspond to 
goodness-of-fit (Pearson’s R2 as indicated in legend, right) of a normal sampling with 
mean=300bp and SD indicated by heatmap column (from 1 to 100bp, left to right) for each of 
144 individuals (one heatmap line per individual) to the observed ranked region coverage. (A) 
Fragments generated by size selection via Pippin Prep (size range 300bp +/-24) and (B) 
independent replicate sample using the same size selection mean (300bp) with 50% broader 
size range (+/-36bp) and sequenced in the same lane. (C) Fragments generated by gel 
extraction, also sequenced in the same flowcell lane. Vertical dotted lines indicate the average 
(weighted by total reads per individual) of best-fit standard deviations for individuals in a single 
size selection cohort (Pippin Prep channel or gel lane) and Vertical dashed lines indicate 
weighted average (as above) of best-fit standard deviations for all individuals in a single flowcell 
lane (i.e. all 48 individuals subject to that size selection regime, across cohorts). 
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Supplemental Figure 2. Restricting shared region calculation to the most highly sampled 
individuals in real and simulated data demonstrates that shared region saturation is 
reached in Pippin Prep conditions.  Recomputed mean number of shared loci across all 
individuals (see figure 4D), excluding all individuals below indicated total read count threshold 
for each panel with sequence read cutoffs of (A) >200kb, (B) >300kb and (C) >400kb. As in 
figure 4D, dashed lines are simulated data (see main text; “model simulation” in supplementary 
text) and solid circles are observed data for a single individual. While both Pippin Prep 
conditions show no increase in average read count after excluding individuals below saturation 
(>200-300K reads for “narrow”, >300-400K reads for “wide”), mean shared region values for 
high read-count gel extraction samples show no evidence of saturation with removal of low 
read-count individuals (peak means = (A) 12K, (B)15K, and (C) 18K. 
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Supplemental Figure 3. Recovery saturation in simulations from Mus predicts shared 
region saturation in experimental data from Peromyscus.  Blue lines indicate number of loci 
expected in (A) “narrow” and  (B) “wide” automated size selection simulation conditions (see 
text; “model simulation” supplementary text) as a function of number of total reads for 5 example 
simulation runs (left Y-axis). Red lines show second derivatives of smoothed values for these 
simulations (right Y-axis; red dashed line is 0 in second derivative). Simulations are labeled 
“saturated” for reads at the transition from logistic to asymptotic recovery as the second 
derivative goes to zero. Consistent with the hypothesis that shared regions in multiple 
individuals are largely comprised of regions recovered at high efficiency (logistic recovery), this 
single-sample simulation recovery saturation of ~17,000 regions for “narrow” and ~24,000 
regions for “wide” size selection is highly concordant with observed saturation in shared region 
recovery in observed data at or above this saturation in read count (figures 4D; S2). 
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Supplemental Figure 4. A ddRADseq experiment targeting equivalent numbers of loci at 
saturation displays more robust shared region recovery at low read counts.  Red line 
indicates number of regions recovered at genotyping depth (7x or higher) in 20 or more of 24 
individual simulations of random shearing RADseq [3] performed on the Mus musculus genome 
using the RE SbfI.  Blue line indicates the number of regions recovered at genotyping depth (7x 
or higher) in 20 out of 24 ddRADseq simulated individuals for a mean=300bp, SD=20bp size 
selection using a SphI - MluCI digest of the Mus musculus genome (see text). Due to correlated 
read counts for regions between individual samples (see “Method Overview”, main text), 
ddRADseq begins to recover significant numbers of high-coverage shared regions between 
individuals at substantially lower total read counts. 
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