Text S1: Estimates of Parameters
This appendix provides a review of the estimates of the parameters defined in table 1, that we have been able to gather from the literature. Most papers we are referring to are empirical research papers with data from experimental lab work or field studies.

Demography and feeding rates of the vectors
Vector local growth rate (
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). The range of variation in vector growth rate was determined according to variations in vector longevity, neglecting the typically low reproduction of maladapted vectors in sink populations (see, e.g., [1]). Since the modelled vectors are thought to live shorter in sink populations, we used the values of longevity typically estimated in source populations (Table S1), as a clue of the maximum vector life expectancy in the sink. The minimal value of vector life expectancy in the village was set to one day. The range of 
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 values to be used was then calculated assuming 
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Table S1. Vectors adult longevity.

	Vector (Disease)
	Estimates (days)
	Reference

	Mosquitoes (MAL – DEN)
	5.8 - 20
	[2]

	Mosquitoes (JE)
	2 - 29
	[3]

	Sandflies (VL)
	6 - 27
	[4]

	Tsetse flies (HAT)
	45 (20 - 60)
	[5]

	Triatomines (CD)
	210 (102 - 338)
	[6,7]


Because the estimates found in the literature for mosquitoes (transmitting MAL, DEN and JE) and sandflies (transmitting VL), were roughly similar, they were given the same standard value of 15 days corresponding to the median of their ranges. According to the other estimates collected, tsetse flies (transmitting HAT) were considered to live up to 45 days (the median of the observed values), while the longevity of triatomines (transmitting CD) was fixed to 210 days (the median of the observed values).
Vector immigration (
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). The maximal rate of vector immigration was set for the ratio of vector to human densities 
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 to be ≤ 1. Since the total number of vectors at equilibrium equals 
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, the maximal immigration rate was given by 
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. Using the maximal values of 
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 specified above and the estimate of the number of human hosts 
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 (see below), the maximal daily rate of immigration was found to be approximately 67 individuals for mosquitoes (transmitting MAL, DEN and JE) and sandflies (transmitting VL), 22 individuals for tsetse flies (transmitting HAT), and 5 for triatomines (transmitting CD). The minimal rate of immigration was set to 0 immigrants per day for all vectors.

Prevalence of infection in immigrant vectors (
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). Prevalence of infection is typically low in mosquitoes (e.g., 2.1% in Anopheles - MAL, [8], 0.097% in Aedes - DEN, [9], and 1.67% in Culex - JE, [10] and flies (0.18% in Glossina - HAT, [11], and 1.56% in phlebotomines - VL, [12]). We thus let the prevalence in immigrant vectors of MAL, DEN, JE, VL, and HAT takes on small values within a common range: 0 to 2%. Levels of prevalence of Trypanosoma cruzi found in triatomines are much higher, typically of the order of 20-50% (e.g., [13-17]), and we thus used an upper limit of 35% that corresponds to the median of the observed values.

Minimal amount of time between two blood-meals (
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). The length of the gonotrophic cycle is commonly thought to be the main determinant of the time elapsed between 2 consecutive contacts made by a vector individual with its host. For dipterous species, such as of mosquitoes or flies, blood-feeding on vertebrate/human hosts, this time interval is on average 3-4 days (see e.g., [2] for Anopheles, [18] for Glossina, [19] for phlebotomines). We thus let parameter 
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 vary in a typical range of 2 to 6 days for the five diseases transmitted by dipterous insects: MAL, DEN, JE, VL, and HAT. However, for the triatomines vectors of CD, this amount of time is significantly larger and have been shown to last from 6 days [20] to 13-26 days [21]. Accordingly, the minimal amount of time between two blood-meals for CD transmitting bugs was varied between 1 and 4 weeks.

Vector finding rate (
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). There is virtually no estimate of vector finding rate in the literature (but see [22]). We thus choose to set up the limits of parameter 
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 to allow for a daily rate ranging from 0 to 100% of the modelled human population.

Demography of human and non-human hosts
Human and non-human hosts population size (
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) was set up to 1000 individuals to model a standard village or a small town. Key domestic non-human hosts of the diseases considered in this study are dogs (for CD and VL) and swine (for JE). [23] recently reviewed dog populations in 23 locations over 14 developing countries. The number of dogs per hundred inhabitants in rural areas typically ranged from 9 to 33.6, with an average of 16.9. A similar estimate could be derived from a study of domestic swine in rural provinces of Lao [24]; the number of swine per hundred inhabitants there varied from 9.5 to 197.3. The corresponding ratio of dogs or swine to humans equals 5.9 (95% IC: 4.9-7.5) and 5.2 (95% IC: 4.0-6.3), respectively. In our model, this ratio was then set up to 1/6, and the number of non-human hosts (
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Human and non-human hosts natural death rates (
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). Natural mortality rates were calculated as 1/longevity. They constitute the mortality rate of susceptible human and non-human hosts, and the baseline to which a disease-induced mortality (see ‘Human and non-human mortality induced by the pathogen’) was added to obtain the mortality rate of infectious and recovered human and non-human hosts. Human hosts natural life expectancy was set to 60 years. The longevity of domestic swine (transmitting JE) was set to 12 months, considering that animals are raised for humans meat-consumption and slaughtered at that age. The life expectancy of dogs, non-human hosts of VL and CD, was set to 3 years, in agreement with [23] and [25] who found that dogs’ longevity ranges from around 2.5 to 4 years.
Probabilities of transmission of the pathogens
Transmission probability from an infectious vector to a human host (
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). Estimates of those probabilities appear in table S2. As we could not find any estimate of the probability of transmission from an infectious sandfly to a human host, we used the estimate of the probability of transmission from a sandfly to a dog (see ‘Transmission probability from an infectious vector to a non-human host’).
Table S2. Probability of transmission from vector to human host.

	Vector (Disease)
	Range 
	Reference

	Mosquitoes (MAL)
	0.01 - 0.13
	[2]

	Mosquitoes (DEN)
	0.5 - 1.0
	[26,27]

	Mosquitoes (JE)
	0.01 - 0.04
	[28]

	Sandflies (VL)
	0.2 - 0.4
	same values as for dogs (see text)

	Tsetse flies (HAT)
	0.5 – 0.7
	[29]

	Triatomines (CD)
	0.6e-3 - 3.8e-3
	[30, 31]


Transmission probability from an infectious vector to a non-human host (
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). The only value of the probability of transmission of VL from vector to non-human hosts that we found came from an earlier model of VL in dogs [32]. This probability was equal to 0.32 per bite, and we thus considered values in the range 0.2 to 0.4 per bite. For JE, we used estimates of the ability of mosquitoes (Aedes albopictus) to transmit the virus to susceptible mice, which ranged from 0.27 to 0.45 per bite [33]. Finally, we assumed vector transmission of CD to dogs to be equivalent to vector transmission to humans (see Table S2.).

Probability of transmission from infectious or recovered humans to vector (
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). Values of the probability of transmission from infectious humans to vector we used appear in table S3. While estimates of this probability were available for MAL and DEN, we used estimates obtained from other mammals, that is hamster, mice and dog, for JE, VL, and CD, respectively (see ‘Probability of transmission from infectious or recovered non-human hosts to vector’). Glossina female flies (transmitting HAT) are considered to be susceptible only while taking their first blood-meal. The susceptibility of such ‘teneral’ females to Trypanosoma brucei gambiense ranges from 0.05 to 0.14 per bite [34,35]. We did not explicitly model this age-dependent susceptibility in tsetse (as, e.g., in [36]), but weighted the infectiousness of humans in early phase of HAT by the probability for a biting tsetse fly to be a ‘teneral’ individual. Such probability was estimated by considering that ‘teneral’ individuals have their first blood meal on their first day of life. Assuming a constant natural death rate of 1/45 per day (see table S1), and considering a stable age-structure, this probability (that equals the fraction of 1-day old individual in the population) was found to be equal to 0.034.
Table S3. Probability of transmission from infectious humans to vector.

	Vector (Disease)
	Range 
	Reference

	Mosquitoes (MAL)
	0.24 - 0.64
	[2]

	Mosquitoes (DEN)
	0.15 - 0.73
	[37]

	Mosquitoes (JE)
	0.14 - 0.38 
	[38]

	Sandflies (VL)
	0.21 - 0.29
	[39]

	Tsetse flies (HAT)
	[0.05 - 0.14] * 0.034
	to limit susceptibility to teneral flies (see text)

	Triatomines (CD)
	0.90 - 0.94 (0.99)
	same values as for dogs (see text)


Recovered humans were assumed to have cleared the pathogen for DEN, JE and VL (see section ‘Modelling’ in the main text), so that their ability to transmit to vector was set to 0. While modelling HAT, ‘recovered’ individuals are in the second stage of the disease. Though circulating pathogens could potentially be transmitted to vectors, it is commonly assumed to be unlikely because of the typically low pathogen concentration in the blood [40]. We thus set the probability of transmission from humans in the second stage of the disease to vector to 0. On the contrary, infectiousness of MAL ‘recovered’ individuals (which are thought to be able to transmit but with reduced infectiousness), and CD ‘recovered’ individuals (which are thought to be in the chronic phase of the disease), was considered positive. This infectiousness 
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 was considered to range from 0.024 to 0.064 for MAL, that is, a probability ten times as small as 
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, following [41], and from 4.2e-3 to 6.2e-3 for CD, following [42].
Probability of transmission from infectious or recovered non-human hosts to vector (
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). Estimates of the probability of transmission from infectious non-human hosts to vector appear in table S4. Since estimates for CD were obtained on bugs’ larvae, and because adults are thought to be even more susceptible [42], the maximal transmission probability was increased from 0.94 to 0.99.
Table S4. Probability of transmission from infectious non-human hosts to vector.
	Vector (Disease)
	Range 
	Reference

	Mosquitoes (JE)
	0.55 - 1.00 
	[43]

	Sandflies (VL)
	0.05 - 0.28
	[44]

	Triatomines (CD)
	0.90 - 0.94 (0.99)
	[45]


Because we assumed that no dog recovered from VL, and that swine recovered from JE have cleared the pathogen (see section ‘Modelling’ in the main text), the only ‘recovered’ non-human individuals able to transmit pathogens to susceptible vectors were dogs chronically infected with CD. We then considered probabilities of transmission ranging from 0.05 [45] to 0.31 [42].

Within-host dynamics of the pathogens
Human and non-human mortality induced by the pathogen (
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). The virulence of the different pathogens to infectious or ‘recovered’ human hosts was calculated from fatality rates collected in the literature (Table S5). The additional mortality induced by the pathogen was calculated as 
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 stands for the period of time over which the fatality rate was reported. 
[image: image42.wmf]T

 was 365 days for MAL, since this disease fatality rate was evaluated on an annual basis. 
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 was set to the duration of the infectious stage (i.e., 
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) for all other diseases, since their fatality rates were evaluated per case.
Table S5. Rate of fatality for infectious humans and pathogen-induced mortality.
	Disease
	Fatality rate 
	Reference
	Pathogen-induced mortality (
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	MAL
	0% - 15% per year
	[2]
	0 – 4.5e-4 per day

	DEN
	0% - 2% per case
	[46]
	0 – 6.7e-4 per day

	JE
	5% to 40% per case
	[47]
	3.7e-3 – 0.26 per day 

	VL
	4% - 98% per case
	[48,49]
	2.3e-4 – 4.4e-2 per day

	HAT
	0% per case
	[50]
	0

	CD
	0% - 5% per case
	[51]
	0 – 1.1e-3 per day


We further considered an additional mortality for ‘recovered’ humans. Individuals in ‘recovered’ stage of the African and American trypanosomiasis, though they are no longer in the pool of infectious, are still at risk of death because they are in a second phase of the disease. For HAT, the fatality rate in the late phase of the disease can drop down to 2% if people are given drugs [52], while it can potentially reach 100% in absence of such treatment. Accordingly, the range of pathogen-induced mortality was set to 2.7e-5 - 3.8e-2 per day. For CD, up to one third of individuals in the chronic phase of the disease can die [51]. We thus varied the fatality rate from 0% to 33%, and the pathogen induced mortality from 0 to 1.8e-5 per day. 
The virulence of JE, VL, and CD’s pathogens to infectious or ‘recovered’ non-human hosts were calculated from fatality rates in the same way as for virulence to human hosts. Fatality rates of infected swine that are non-human hosts of JE, can vary from 0 in adults to 100% in new-borns [53,54]. We considered this whole range of variation so that the additional mortality due to the diseases was varied from 0 to 4.61. Infected dogs that are non-human hosts of VL are typically killed through culling program. The fatality rate of infectious dogs was set to 99%, assuming that a small fraction of infected dogs was not killed because of inefficient detection, failed diagnosis, or non-participation of dog-owners [55,56]. The additional mortality due to the pathogen was then varied from 4.2e-3 to 4.61 per day. We could not find estimates of the fatality rate for infected dogs hosts of CD. We then assumed the fatality rates in both the acute (
[image: image46.wmf]h

I

) and chronic (
[image: image47.wmf]h

R

) stage of CD to be the same as in humans. Dog is indeed viewed as the best experimental model for studying CD pathology, because the course of the disease is very similar to what is observed in human hosts [57]. Accordingly, additional mortality induced by the pathogen was varied from 0 – 1.1e-3 per day in the acute stage, and from 0 – 3.6e-4 per day in the chronic stage of the disease.
Human recovery and loss of immunity (
[image: image48.wmf]H

I

r

, 
[image: image49.wmf]H

R

l

). The rates of human recovery and loss of immunity were calculated as the inverse of the duration of infectious and ‘recovered’ stages, i.e.  
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, respectively. Duration of the infectious state in human hosts used for the calculation of the recovery rates are reported in table S6. 

Table S6. Duration of the infectious state in human hosts 
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	Disease
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 (days)
	Reference

	MAL
	60 – 630
	[2]

	DEN
	3 - 15
	[58,59]

	JE
	2 - 14
	[60]

	VL
	90 - 180
	[61]

	HAT
	120 – 780
	[36,62]

	CD
	45 - 60
	[63]


For MAL, the rate of return to a susceptible and non-infectious state was calculated for the duration of reduced infectivity to range from 3 months to life-long, following [2]. For HAT, the rate at which individuals leave the pool of ‘recovered’ was calculated from the average duration of the late phase of the disease (state 
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), which ranges from 4 [36] to 24 months [62]. We assumed long-life immunity for JE, and VL, and considered that CD chronic infection also lasts for life.
Non-human recovery and loss of immunity (
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). As for human hosts, the rates of recovery and loss of immunity of non-human hosts were calculated as the 1/duration of the 
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 stages, respectively. We varied the duration of infection in swine hosts of JE from 1 day [64] to 7 days [65], and assumed long-life immunity for ‘recovered’ individuals. For VL, we considered a dog population where infection can be cleared by natural death or by cull-and-replacement program, as typically done in other modelling attempts, [55,66]. We let the possibility for the infection to be life-long in absence of control program, and reduced it to a unique day to mimic extremely timely interventions. Additionally, the rate of return to the susceptible stage was assumed to be infinitely large since in both cases, natural death or cull-and-replacement, dogs die (rather than recover) and are then typically replaced by a susceptible individual. In agreement with [57], we varied the duration of the acute phase of CD in dogs from 45 to 75 days, and assumed a life-long chronic stage of the disease, i.e. no return to the susceptible stage.
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