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Triangularization of the generator matrix A
In this section, we use a simple example to illustrate why lexicographic ordering of the elements of the
sample space Z leads to a lower triangular generator matrix A in equation (7) of the main text.

Let us consider the SIR model and denote by Z1, Z2 the DAs of the two reactions S + I → 2I and
I → R, respectively. We will assume that, initially, there are two susceptible individuals, one infected
individual, and no recovered individuals; i.e., we will assume that x1(0) = 2, x2(0) = 1, and x3(0) = 0.
This implies that 0 ≤ Z1(t) ≤ 2 and 0 ≤ Z2(t) ≤ 3, at any time t > 0, which is due to the fact that
the first reaction will occur at most two times, after which all individuals will be infected, whereas, the
second reaction can occur at most three times, after which all individuals will recover from the infection.
In this case, lexicographic ordering of the elements of the two-dimensional sample space Z results in the
following twelve points:

zzz1 = (0, 0) zzz2 = (0, 1)
zzz3 = (0, 2) zzz4 = (0, 3)
zzz5 = (1, 0) zzz6 = (1, 1)
zzz7 = (1, 2) zzz8 = (1, 3)
zzz9 = (2, 0) zzz10 = (2, 1)
zzz11 = (2, 2) zzz12 = (2, 3).

As a consequence, the probability vector ϕϕϕ(t) in equation (7) of the main text is given by

ϕϕϕ(t) =



Pr[Z1(t) = 0, Z2(t) = 0]
Pr[Z1(t) = 0, Z2(t) = 1]
Pr[Z1(t) = 0, Z2(t) = 2]
Pr[Z1(t) = 0, Z2(t) = 3]
Pr[Z1(t) = 1, Z2(t) = 0]
Pr[Z1(t) = 1, Z2(t) = 1]
Pr[Z1(t) = 1, Z2(t) = 2]
Pr[Z1(t) = 1, Z2(t) = 3]
Pr[Z1(t) = 2, Z2(t) = 0]
Pr[Z1(t) = 2, Z2(t) = 1]
Pr[Z1(t) = 2, Z2(t) = 2]
Pr[Z1(t) = 2, Z2(t) = 3]



. (S.1)

Let us now assume that the propensity functions of the two SIR reactions are given by

π1(x1, x2, x3) = k1x1x2

π2(x1, x2, x3) = k2x2,

where k1 and k2 are two rate constants and x1, x2, and x3 denote the number of susceptible, infected,
and recovered individuals, respectively. Since x1(0) = 2, x2(0) = 1 and x3(0) = 0, equation (3) of the
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main text implies that

X1(t) = 2− Z1(t)

X2(t) = 1 + Z1(t)− Z2(t)

X3(t) = Z2(t),

which, together with equation (5) of the main text, results in

α1(z1, z2) = k1(2− z1)(1 + z1 − z2)

α2(z1, z2) = k2(1 + z1 − z2), (S.2)

for 0 ≤ z1 ≤ 2 and z2 ≤ 1 + z1, whereas, α1(z1, z2) = α2(z1, z2) = 0, otherwise. As a consequence of
equations (4) and (7) of the main text and (S.1), (S.2), the generator matrix A is given by

A =



−(2k1 + k2) 0 0 0 0 0 0 0 0 0 0 0
k2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
2k1 0 0 0 −2(k1 + k2) 0 0 0 0 0 0 0
0 0 0 0 2k2 −(k1 + k2) 0 0 0 0 0 0
0 0 0 0 0 k2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2k1 0 0 0 −3k2 0 0 0
0 0 0 0 0 k1 0 0 3k2 −2k2 0 0
0 0 0 0 0 0 0 0 0 2k2 −k2 0
0 0 0 0 0 0 0 0 0 0 k2 0



,

which is indeed sparse and lower triangular. Note that states that cannot occur are assigned zero propen-
sities. These states correspond to the zero rows in A [e.g., this is true for state (0, 2), which is associated
with the third row of A and would result in a negative number of −1 infected individuals]. Note also
that the non-zero diagonal elements of this matrix are all negative, with the remaining nonzero elements
being positive. Finally, each column of A sums to zero.

Invertibility of matrix I− τA
We will show that matrix B := I − τA is invertible, for any τ > 0. Indeed, for each column k of B, the
element bkk is strictly greater than the sum of the absolute values of the remaining elements bk′k, k

′ ̸= k,
since

bkk = 1− τakk = 1 + τ
∑

m∈M
αm(zzzk) > τ

∑
m∈M

αm(zzzk) = τ
∑
k′ ̸= k

ak′k =
∑
k′ ̸= k

|bk′k|,

for τ > 0, by virtue of the fact that akk = −
∑

m∈Mαm(zzzk) and ak′k = αm(zzzk), whenever zzzk′ = zzzk +eeem,

where eeem is the mth column of the M ×M identity matrix, and ak′k = 0, otherwise. Thus, B is invertible
according to Theorem 6.1.10 in [1].

The IE method produces a probability vector

We will now show that, at each iteration j, the IE method produces a probability vector ϕ̂ϕϕ(tj) for any

step-size τ [i.e., all elements of ϕ̂ϕϕ(tj) are nonnegative and sum to one]. Since the initial vector ϕ̂ϕϕ(0) is
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taken to be a probability vector, we must only show that, if ϕ̂ϕϕ(tj−1) is a probability vector, then ϕ̂ϕϕ(tj) is
a probability vector as well.

We will first show that

ϕ̂k(tj−1) ≥ 0 =⇒ ϕ̂k(tj) ≥ 0, for every k = 1, 2, . . . ,K, (S.3)

where ϕ̂k(tj−1) and ϕ̂k(tj) are the kth elements of ϕ̂ϕϕ(tj−1) and ϕ̂ϕϕ(tj), respectively. Note that the off-
diagonal elements of matrix B := I − τA are nonpositive, since bk′k = −τak′k = −ταm(zzzk) ≤ 0, for
k′ ̸= k. Furthermore, using the same argument as in the previous section, we can show that B+ tI is non-
singular for every t ≥ 0. According to Theorem 2.5.3 in [2], all elements of matrix B−1 are nonnegative.

Since ϕ̂ϕϕ(tj) = B−1ϕ̂ϕϕ(tj−1), we obtain (S.3).
We will now show that

1T ϕ̂ϕϕ(tj−1) = 1 =⇒ 1T ϕ̂ϕϕ(tj) = 1,

where the elements of vector 1 are all equal to one. Indeed, we have that

1 = 1T ϕ̂ϕϕ(tj−1)

= 1T (I− τA) ϕ̂ϕϕ(tj)

= 1T ϕ̂ϕϕ(tj)− τ1TAϕ̂ϕϕ(tj)

= 1T ϕ̂ϕϕ(tj)− τ0T ϕ̂ϕϕ(tj)

= 1T ϕ̂ϕϕ(tj), (S.4)

where the elements of vector 0 are all equal to zero. The second equality in (S.4) comes from equation (8)
of the main text, whereas, the fourth equality comes from the fact that the elements of each column of
matrix A sum to zero.

Note that the previous arguments do not depend on the particular value of the step-size τ . Hence,

ϕ̂ϕϕ(tj) is a probability vector for any value of τ .

The global error of the IE method is of O(τ)

In this section, we show that the global error ||ϕϕϕ(tj) − ϕ̂ϕϕ(tj)||1 associated with the IE method, where
tj := jτ , is of O(τ).

Note that ϕϕϕ(tj) = exp(τA)ϕϕϕ(tj−1) and (I− τA)ϕ̂ϕϕ(tj) = ϕ̂ϕϕ(tj−1). Thus,

ϕϕϕ(tj) = exp(τA)ϕϕϕ(tj−1) = · · · = exp(jτA)ϕϕϕ(0)

ϕ̂ϕϕ(tj) = (I− τA)−1ϕ̂ϕϕ(tj−1) = · · · = (I− τA)−jϕ̂ϕϕ(0).

As a result,

exp(−jτA)ϕϕϕ(tj) = (I− τA)jϕ̂ϕϕ(tj), (S.5)

since ϕ̂ϕϕ(0) = ϕϕϕ(0). However,
exp(−τA) = I− τA+O(τ2). (S.6)

From (S.5) and (S.6), we have that

exp(−jτA)ϕϕϕ(tj) =
[
exp(−τA)−O(τ2)

]j
ϕ̂ϕϕ(tj) =

[
exp(−jτA)− jO(τ2)

]
ϕ̂ϕϕ(tj).

Consequently,

exp(−jτA)[ϕϕϕ(tj)− ϕ̂ϕϕ(tj)] = −jO(τ2)ϕ̂ϕϕ(tj) ⇐⇒ ϕϕϕ(tj)− ϕ̂ϕϕ(tj) = −jO(τ2) exp(jτA)ϕ̂ϕϕ(tj),
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which implies that

||ϕϕϕ(tj)− ϕ̂ϕϕ(tj)||1 = ||jO(τ2) exp(jτA)ϕ̂ϕϕ(tj)||1
≤ jO(τ2) || exp(jτA)||1||ϕ̂ϕϕ(tj)||1
= jO(τ2)

=
tj
τ

O(τ2)

≤ tmax

τ
O(τ2), (S.7)

where tmax is the maximum simulation time. To obtain (S.7), we have used the fact that || exp(jτA)||1 = 1,

since A is the generator matrix of a Markov process, and ||ϕ̂ϕϕ(tj)||1 = 1. As a result, we finally obtain

||ϕϕϕ(tj)− ϕ̂ϕϕ(tj)||1 ≤ tmaxO(τ), which implies that ||ϕϕϕ(tj)− ϕ̂ϕϕ(tj)||1 = O(τ).

Computational and storage requirements of KSA method

The Arnoldi procedure performed at each step of the KSA method requires L0 matrix-vector multiplica-
tions between matrix Q and the probability distribution θθθ, resulting in a cost of O(L0L

2) computations
in general. However, the sparsity of Q [matrix Q has (M + 1)L non-zero elements instead of L2] reduces
this cost to O(L0(M +1)L). Additionally, the orthonormalization step in the Arnoldi procedure requires
O(L2

0L) operations due to inner product computations. Finally, the Krylov subspace approximation step
requires that matrix V is multiplied with the first column of the matrix exponential exp(τH), at a cost
of O(L0L). By summing these costs, we can see that the total computational cost of the KSA method is
of O(L0(M + L0)L). On the other hand, the storage requirements are of O((M + L0)L), where O(ML)
memory locations are required for storing Q and O(L0L) locations are required for storing matrix V,
which is multiplied with the first column of the matrix exponential exp(τH).

Justification of Richardson extrapolation

To justify the Richardson extrapolation procedure used to improve the accuracy of the IE method, let
us assume that the solution ϕϕϕ(tj−1) of equation (7) of the main text is known at time tj−1. Then, the

approximate solution ϕ̂ϕϕ(tj | tj−1) obtained by the IE method at time tj satisfies

ϕ̂ϕϕ(tj | tj−1) = ϕϕϕ(tj−1) + τAϕ̂ϕϕ(tj | tj−1), (S.8)

by virtue of equation (8) of the main text. We now have that

ϕϕϕ(tj)− ϕ̂ϕϕ(tj | tj−1) = ϕϕϕ(tj)−ϕϕϕ(tj−1)− τAϕ̂ϕϕ(tj | tj−1)

= ϕϕϕ(tj)−ϕϕϕ(tj−1)− τAϕϕϕ(tj−1)− τ2A2ϕ̂ϕϕ(tj | tj−1)

= ϕϕϕ(tj)−ϕϕϕ(tj−1)− τAϕϕϕ(tj−1)− τ2A2ϕϕϕ(tj−1) +O(τ3), (S.9)

where we have used (S.8) twice. A Taylor series expansion of ϕϕϕ(tj−1 + τ) around tj−1 gives

ϕϕϕ(tj) = ϕϕϕ(tj−1 + τ)

= ϕϕϕ(tj−1) + τ
dϕϕϕ(tj−1)

dt
+

1

2
τ2

d2ϕϕϕ(tj−1)

dt2
+O(τ3)

= ϕϕϕ(tj−1) + τAϕϕϕ(tj−1) +
1

2
τ2A2ϕϕϕ(tj−1) +O(τ3), (S.10)
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by virtue of equation (7) of the main text, which, together with (S.9), results in

ϕϕϕ(tj) = ϕ̂ϕϕτ (tj | tj−1)−
1

2
τ2A2ϕϕϕ(tj−1) +O(τ3), (S.11)

where we now use ϕ̂ϕϕτ (tj | tj−1) to denote the fact that the approximate solution ϕ̂ϕϕ(tj | tj−1) is obtained
with step-size τ .

Let us now denote by ϕ̂ϕϕτ/2(tj | tj−1) the approximate solution obtained by the IE method at time

tj when the step-size is τ/2. Note that ϕ̂ϕϕτ/2(tj−1 + τ/2 | tj−1) = (I − τA/2)−1ϕϕϕ(tj−1) and ϕ̂ϕϕτ/2(tj |
tj−1) = (I − τA/2)−1ϕ̂ϕϕτ/2(tj−1 + τ/2 | tj−1), by virtue of equation (8) of the main text. Therefore,

ϕ̂ϕϕτ/2(tj | tj−1) = (I− τA/2)−2ϕϕϕ(tj−1), or [compare with (S.8)]

ϕ̂ϕϕτ/2(tj | tj−1) = ϕϕϕ(tj−1) + τAϕ̂ϕϕτ/2(tj | tj−1)−
τ2

4
A2ϕ̂ϕϕτ/2(tj | tj−1). (S.12)

We now have that

ϕϕϕ(tj)− ϕ̂ϕϕτ/2(tj | tj−1) = ϕϕϕ(tj)−ϕϕϕ(tj−1)− τAϕ̂ϕϕτ/2(tj | tj−1) +
τ2

4
A2ϕ̂ϕϕτ/2(tj | tj−1)

= ϕϕϕ(tj)−ϕϕϕ(tj−1)− τAϕϕϕ(tj−1) +
τ2

4
A2ϕϕϕ(tj−1)− τ2A2ϕ̂ϕϕτ/2(tj | tj−1) +O(τ3)

= ϕϕϕ(tj)−ϕϕϕ(tj−1)− τAϕϕϕ(tj−1)−
3

4
τ2A2ϕϕϕ(tj−1) +O(τ3), (S.13)

where we have used (S.12) twice. From the Taylor series expansion (S.10) and (S.13), we finally obtain

ϕϕϕ(tj) = ϕ̂ϕϕτ/2(tj | tj−1)−
1

4
τ2A2ϕϕϕ(tj−1) +O(τ3). (S.14)

Now, from (S.11) and (S.14), we have

ϕϕϕ(tj) = 2ϕ̂ϕϕτ/2(tj | tj−1)− ϕ̂ϕϕτ (tj | tj−1) +O(τ3). (S.15)

This result shows that
ϕ̂ϕϕ∗(tj | tj−1) := 2ϕ̂ϕϕτ/2(tj | tj−1)− ϕ̂ϕϕτ (tj | tj−1)

may produce a better approximation to ϕϕϕ(tj) than either ϕ̂ϕϕτ (tj | tj−1) or ϕ̂ϕϕτ/2(tj | tj−1), since it results

in a third-order approximation (in terms of the local error) of ϕϕϕ(tj), as compared to ϕ̂ϕϕτ (tj | tj−1) or

ϕ̂ϕϕτ/2(tj | tj−1) which result in second-order approximations.

We can also use ϕ̂ϕϕτ (tj | tj−1) and ϕ̂ϕϕτ/2(tj | tj−1) to determine an appropriate step-size τ∗ that
guarantees a local error within a pre-specified tolerance TOL. Indeed, if we define the local error ERR :=
∥ϕϕϕ(tj)− ϕ̂ϕϕτ/2(tj | tj−1)∥1, then from equation (S.15), we approximately have that

ERR = ∥ϕ̂ϕϕτ/2(tj | tj−1)− ϕ̂ϕϕτ (tj | tj−1)∥1, (S.16)

which provides a way to calculate the error for a sufficiently small step-size τ . If now ERR ̸= TOL, then we

need to change the step-size to a new value τ∗, such that ϕϕϕ(tj)− ϕ̂ϕϕτ∗/2(tj | tj−1) = ϕϕϕ(tj)− ϕ̂ϕϕτ/2(tj | tj−1),

which will imply that TOL := ∥ϕϕϕ(tj)−ϕ̂ϕϕτ∗/2(tj | tj−1)∥1 = ∥ϕϕϕ(tj)−ϕ̂ϕϕτ/2(tj | tj−1)∥1 = ERR. From (S.14),
we have that

ϕϕϕ(tj)− ϕ̂ϕϕτ/2(tj | tj−1) ≃ −1

4
τ2A2ϕϕϕ(tj−1)

ϕϕϕ(tj)− ϕ̂ϕϕτ∗/2(tj | tj−1) ≃ −1

4
τ2∗A2ϕϕϕ(tj−1),
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from which we obtain
τ2∗
τ2

≃
∥ϕϕϕ(tj)− ϕ̂ϕϕτ∗/2(tj | tj−1)∥1
∥ϕϕϕ(tj)− ϕ̂ϕϕτ/2(tj | tj−1)∥1

=
TOL

ERR
.

As a consequence, the desired step-size value will approximately be given by

τ∗ = τ

√
TOL

ERR
. (S.17)

An alternative ordering method

In [3], an ordering of the population sample space has been proposed that can be used to put equation (9
)of the main text into a lower triangular form. The idea is to augment the population sample space X in
a way that the augmented states can be ordered so that a reaction can only take a state from a smaller
to a larger value with respect to this ordering. Then, by arranging the states of the augmented sample
space in an increasing order, one ensures that the resulting generator matrix will be lower triangular.

To define such an ordering, the reaction system is augmented with an artificial ‘counting’ species
XN+1, whose value increases monotonically in a way which guarantees that the augmented population
process {X1(t), X2(t), . . . , XN+1(t)} will always be well-ordered. The augmented system is governed by
the following M reactions [compare with equation (2) of the main text]

N∑
n=1

νnmXn →
N∑

n=1

ν′nmXn + ν′N+1,mXN+1, m ∈ M,

whose propensity functions are the same as the original propensities. This implies that the DA dynamics
will not change and, therefore, the joint probability distribution of X1(t), X2(t), . . . , XN (t) can be calcu-
lated by marginalizing the joint probability distribution of the augmented statesX1(t), X2(t), . . . , XN+1(t)
with respect to XN+1.

The stoichiometry coefficient ν′N+1,m must be chosen so that the reactions always move the state X̃XX =

{X1, X2, . . . , XN+1} from a lower value x̃xx to a higher value x̃xx
′
> x̃xx with respect to the following ordering

rules:

1)
∑N+1

n=1 x′
n >

∑N+1
n=1 xn, or

2)
∑N+1

n=1 x′
n =

∑N+1
n=1 xn and x′

N+1 > xN+1, or

3)
∑N+1

n=1 x′
n =

∑N+1
n=1 xn, x

′
N+1 = xN+1, and x′

N > xN , or

...
...

N + 1)
∑N+1

n=1 x′
n =

∑N+1
n=1 xn, x

′
N+1 = xN+1, . . . , x

′
3 = x3, and x′

2 > x2.

Note that there are three types of reactions in the original system, given by equation (2) of the main

text: (i) reactions for which
∑N

n=1 snm > 0, (ii) reactions for which
∑N

n=1 snm = 0, and (iii) reactions for

which
∑N

n=1 snm < 0. If reaction m is of type (i), then ν′N+1,m can be set equal to zero and the reaction
will result in the state variables increasing according to rule 1. If a reaction m is of type (ii), then ν′N+1,m

can be set equal to one and this reaction will result in the state variables increasing according to rule 2.
Finally, if reaction m is of type (iii), then ν′N+1,m can be set equal to −

∑N
n=1 snm and this reaction will
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result in the state variables increasing according to rule 2. These observations lead to setting

ν′N+1,m :=

[
N∑

n=1

snm < 0

](
−

N∑
n=1

snm

)
+

[
N∑

n=1

snm = 0

]
, (S.18)

where [·] is the Iverson bracket that takes value one when its argument is true and zero otherwise.
The previous ordering can be used to construct an alternative numerical algorithm for solving the

master equation of the population process using the implicit Euler method discussed in our paper. This
algorithm however will not provide any obvious advantage over the method based on the DA process and,
in particular, it will not resolve the important issue of the underlying sample space being unbounded.
As a matter of fact, it is easy to see that if the artificial ‘counting’ population process XN+1(t) is almost
surely bounded, then the DA process will be almost surely bounded as well. Moreover, if the DA process
is almost surely unbounded and Xn is almost surely bounded, for every n = 1, 2, . . . , N , then the artificial
‘counting’ population process will be almost surely unbounded as well. Indeed, if zm is unbounded for a
reaction m for which ν′N+1,m > 0, then this will result in an unbounded counting variable xN+1, since the
artificial ‘counting’ process can never be decremented. Thus, we must only show that, if zm is unbounded
for at least one reaction m for which ν′N+1,m = 0 and xn is bounded for every n = 1, 2, . . . , N , then xN+1

will also be unbounded.
Suppose there exists a DA zm that is unbounded for a reaction m for which ν′N+1,m = 0 and that xn is

bounded, for every n = 1, 2, . . . , N+1. Since ν′N+1,m = 0, we have that
∑N

n=1 snm > 0, by virtue of (S.18).

Thus, reaction m increments the value of
∑N

n=1 xn an unbounded number of times. Since, for every
n = 1, 2, . . . , N , xn is assumed to be bounded, this means that at least one reaction m′ must decrement
the value of

∑N
n=1 xn an unbounded number of times. This implies that there exists an unbounded DA

zm′ for some reaction m′ for which
∑N

n=1 snm′ < 0 or, equivalently, ν′N+1,m′ = −
∑N

n=1 snm′ > 0, by
virtue of (S.18). This implies that xN+1 is unbounded, which contradicts our initial assumption and
concludes the proof.
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