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Supplement A critical evaluation of network and pathway-based
classifiers for outcome prediction in breast cancer

Staiger et al.

1 Current composite feature classifiers do not outperform single
gene classifiers on six breast cancer datasets

We performed a paired Wilcoxon rank test between the AUC distribution of the single-gene
classifier and all composite feature classifiers. Table S1 contains the two-sided p-values of the
statistic.

Table S1. P-values of the Wilcoxon rank test. CV-opt features

C HPRD C I2D C NetC C KEGG L KEGG L MsigDB

SG 0.2054 0.0076 0.1840 0.0467 0.9426 0.7953

T HPRD T I2D T NetC T KEGG

SG 0.0000 0.0000 0.0000 0.0002

Table S2. Number of features used in the cv-opt. NMCs. In parenthesis the number
of genes contained in the cv-optimized number of features are given.

Chin Desmedt Loi Miller Pawitan Vijver mean std

C HPRD 31(190) 20(118) 282(982) 194(779) 261(840) 26(151) 135.67 (510.0) 113.2 (362.63)

C I2D 315(1319) 396(1500) 10(94) 5(48) 373(1221) 346(1035) 240.83 (869.5) 166.84 (581.20)

C NetC 291(1077) 225(900) 310(1112) 135(624) 230(796) 109(490) 216.67 (833.17) 73.88 (225.30)

C KEGG 63(290) 84(358) 133(356) 7(43) 89(251) 30(130) 67.67 (238.0) 41.05 (116.11)

L KEGG 210(494) 209(489) 213(492) 208(443) 32(103) 203(486) 179.17 (417.83) 65.88 (141.87)

L MsigDB 12(93) 10(60) 11(68) 188(361) 340(516) 371(627) 155.33 (287.5) 155.02 (227.54)

SG 27 6 58 250 147 72 93.33 (93.33) 82.82 (82.82)

T HPRD 87(1473) 98(1659) 17(307) 37(696) 98(1534) 2(32) 56.5 (950.17) 39.334 (637.44)

T I2D 26(1065) 25(1015) 28(1440) 18(1107) 2(82) 20(1178) 19.83 (981.17) 8.69 (424.61)

T NetC 20(551) 5(126) 22(535) 37(781) 31(698) 12(187) 21.17 (479.67) 10.76 (244.05)

T KEGG 35(598) 27(628) 31(764) 42(868) 30(825) 44(539) 34.83 (703.67) 6.26 (122.05)
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1.1 Logistic regression
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Figure S1. Performances of the LOG classifiers employing single genes and composite
features constructed from different secondary data sources.
A: Box plots of the 30 AUC values. The boxes are sorted in descending order according to the median.
B: This panel shows the result of pairwise comparisons between all combinations of feature extraction
methods and secondary data sources. If, for a given combination of training and test data set, the AUC
value of classifier i is higher (lower) than the AUC value of classifier j on the same test data set, it is
counted as a win (loss) for classifier i. Element (i, j) in the matrix represents the log2 ratio of wins to
losses of method i compared to method j. Green indicates an overall win, red an overall loss and white
represents draws. The rows and columns are sorted as in Panel A.

Table S3. P-values of the Wilcoxon rank test. LOG classifiers with CV-opt
features

C HPRD C I2D C NetC C KEGG L KEGG L MsigDB T HPRD

SG 0.0248 0.3387 0.8078 0.0841 0.0093 0.0058 0.0006

Since the LOG only performs stably when using few features, an analysis of the performance of
the 50, 100 and 150 best features was not possible.
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Table S4. Number of features used in the cv-opt. LOG. In parenthesis the number of
genes contained in the cv-optimized number of features are given.

Chin Desmedt Loi Miller Pawitan Vijver mean std

C HPRD 10(73) 15(92) 10(85) 1(9) 13(96) 48(256) 16.17 (101.83) 14.89 (74.87)

C I2D 6(43) 1(13) 8(76) 12(107) 9(73) 48(290) 14.0 (100.33) 15.57 (89.7)

C NetC 11(89) 17(124) 12(102) 4(31) 12(95) 48(270) 17.33 (118.5) 14.23 (73.41)

C KEGG 16(89) 18(123) 17(91) 24(129) 15(71) 2(15) 15.33 (86.33) 6.62 (37.68)

L KEGG 14(72) 16(101) 6(34) 7(30) 12(39) 2(13) 9.5 (48.17) 4.89 (29.47)

L MsigDB 11(84) 9(47) 4(35) 3(11) 14(46) 4(29) 7.5 (42.0) 4.11 (22.3)

SG 6 6 22 44 23 2 17.17 (17.17) 14.47 (14.48)

1.2 3-Nearest neighbor classifier

In addition to the logistic regression and the NMC we tested the classification performance of
pathway and network based features and single genes in a 3-Nearest neighbor classifier (3NN).
As distance metric we chose the Euclidean distance. Further, we weighted the contribution w
of each neighbor to a sample’s score by

wj =
1

dj + ε
(1)

where dj denotes the Euclidean distance of the jth neighbor and ε = 0.000001.
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Figure S2. Performances of the 3NN classifiers employing single genes and composite
features constructed from different secondary data sources.
First column: Box plots of the 30 AUC values. B: This panel shows the result of pairwise
comparisons between all combinations of feature extraction methods and secondary data sources. If, for
a given combination of training and test data set, the AUC value of classifier i is higher (lower) than
the AUC value of classifier j on the same test data set, it is counted as a win (loss) for classifier i.
Element (i, j) in the matrix represents the log2 ratio of wins to losses of method i compared to method
j. Green indicates an overall win, red an overall loss and white represents draws. The rows and columns
are sorted as in Panel A.
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Table S5. P-values of the Wilcoxon rank test. Single genes classifier performances
versus all network and pathway based classifier performances.

50 best features

L MsigDB L KEGG C NetC C I2D C HPRD

SG 0.9838 0.7303 0.5561 0.2054 0.7734

100 best features

L MsigDB L KEGG C NetC C I2D C HPRD

SG 0.2534 0.7611 0.3492 0.0919 0.7000

150 best features

L MsigDB L KEGG C NetC C I2D C HPRD

SG 0.1840 0.6808 0.1840 0.1142
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1.2.1 Cross validation results: mean AUC vs. number of features
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Figure S3. Mean performances from the five-fold cross-validation. For a range of features we
calculated the five-fold cross-validation per dataset. Shown are the results from the NMC and the LOG
in combination with the single-gene approach and the algorithm by Lee et al.
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Figure S4. Mean performances from the five-fold cross-validation per dataset. For a range
of features we calculated the five-fold cross-validation performance per dataset - one curve per dataset.
Shown are the results from the NMC and the LOG in combination with the algorithm by Chuang et al.
Chuang returns, for each cross validation fold, a specific number of features - this may vary across folds.
The indicated averages are computed only across the number of folds that returned a value.
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Figure S5. Mean performances from the five-fold cross-validation per dataset. For a range
of features we calculated the five-fold cross-validation performance per dataset - one curve per dataset.
Shown are the results from the NMC and the LOG in combination with the algorithm by Taylor et al.
Taylor returns, for each cross validation fold, a specific number of features - this may vary across folds.
The indicated averages are computed only across the number of folds that returned a value.
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2 The number of selected features does not effect the relative
performances

Table S6. P-values of the Wilcoxon rank test for the 50 best features. Testing
whether mean single gene performance is different from mean composite feature
classifier performance.

L MsigDB L KEGG C NetC C I2D C HPRD

SG 0.3709 0.7655 0.0405 0.0010 0.0345

We performed a paired Wilcoxon rank test between the AUC distribution of the classifiers with
CV-optimized number of features and and their counter parts using the best 50, 100 and 150
features (see Table S7).

Table S7. P-values of the Wilcoxon rank test for the 50 best features vs.
CV-optimized features

SG L MsigDB L KEGG C NetC C I2D C HPRD

0.1204 0.5440 0.4331 0.0636 0.3759 0.0634
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Figure S6. Performances of the NMC classifiers for single genes and composite feature
classifiers using 100 features. For each combination of feature extraction method and secondary
data source, and each pair of datasets we obtained one AUC value resulting in 30 AUC values per
combination. A: Each box plot shows the median, the 25% and 75% percentiles and the standard
deviation of the 30 AUC values. Outliers are depicted by crosses. The performances associated with the
CV-optimized features (100 best features) are depicted by the green (blue) boxplots, respectively. B:
This panel shows the result of pairwise comparisons between all feature extraction - prior knowledge
source combinations. The rows and columns are sorted as in Panel A.

Table S8. P-values of the Wilcoxon rank test for the 100 best features. Testing
whether mean single gene performance is different from mean composite feature
classifier performance.

L MsigDB L KEGG C NetC C I2D C HPRD

SG 0.7303 0.2894 0.0011 0.0001 0.0175

Table S9. P-values of the Wilcoxon rank test for the 100 best features vs.
CV-optimized features

SG L MsigDB L KEGG C NetC C I2D C HPRD

0.8454 0.1444 0.2685 0.1631 0.5170 0.7036
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Figure S7. Performances of the NMC classifiers for single genes and composite feature
classifiers using 150 features. For each feature extraction - secondary data source combination, and
each pair of datasets we obtained one AUC value resulting in 30 AUC values per combination. A: Each
box plot shows the median, the 25% and 75% percentiles and the standard deviation of the 30 AUC
values. Outliers are depicted by crosses. The performances associated with the CV-optimized features
(100 best features) are depicted by the green (blue) boxplots, respectively. B: This panel shows the
result of pairwise comparisons between all feature extraction - prior knowledge source combinations.
The rows and columns are sorted as in Panel A.

Table S10. P-values of the Wilcoxon rank test for the 150 best features. Testing
whether mean single gene performance is different from mean composite feature
classifier performance.

L MsigDB L KEGG C NetC C I2D

SG 0.2367 0.6362 0.0053 0.0001

Table S11. P-values of the Wilcoxon rank test for the 150 best features vs.
CV-optimized features

SG L MsigDB L KEGG C NetC C I2D

0.7375 0.0432 0.1109 0.1694 0.6733
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3 Restricted gene sets are not detrimental to composite feature
classifiers

Table S12. P-values of the Wilcoxon rank test between the unrestricted SG and
each restricted SG with CV-optimized features. The set to which the single gene
classifier is restricted when selecting genes, is depicted in the top row.

HPRD I2D NetC KEGG MsigDB

unrestr 0.5372 0.0007 0.0837 0.0483 0.0460

Table S13. P-values of the Wilcoxon rank test between the unrestricted SG and
each restricted SG with the best 50 features

HPRD I2D NetC KEGG MsigDB

unrestr 0.3286 0.1682 0.7189 0.0069 0.1403

Table S14. P-values of the Wilcoxon rank test between the unrestricted SG and
each restricted SG with the best 100 features

HPRD I2D NetC KEGG MsigDB

unrestr 0.1981 0.3235 1.0000 0.1048 0.1977

Table S15. P-values of the Wilcoxon rank test between the unrestricted SG and
each restricted SG with the best 150 features

HPRD I2D NetC KEGG MsigDB

unrestr 0.3709 0.0270 0.6971 0.8936 0.3457
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Figure S8. Restricted single-gene classifiers - fixed number of features. A: the best 50 single
genes; B: the best 100 single genes; C: the best 150 single genes.

4 Training set size has no significant effect of performance dif-
ferences

Affymetrix data - Paired setting

Table S16. P-values of the Wilcoxon rank test. Affymetrix data, paired setting,
with CV-optimized features.

L MsigDB L KEGG C KEGG C NetC C I2D C HPRD

SG 0.5217 0.5503 0.1909 0.2455 0.c0153 0.4304

Table S17. P-values of the Wilcoxon rank test. Affymetrix data, paired setting,
with the best 50 features.

L MsigDB L KEGG C KEGG C NetC C I2D C HPRD

SG 0.0897 0.4980 0.4813 0.0759 0.0023 0.2024

Table S18. P-values of the Wilcoxon rank test. Affymetrix data, paired setting,
with the best 100 features.

L MsigDB L KEGG C NetC C I2D C HPRD

SG 0.2162 0.9854 0.0136 0.0002 0.1054
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Table S19. P-values of the Wilcoxon rank test. Affymetrix data, paired setting,
with the best 150 features.

L MsigDB L KEGG C NetC C I2D C HPRD

SG 0.0192 0.7012 0.0400 0.0006 0.2305

Affymetrix data, merged setting

Table S20. P-values of the Wilcoxon rank test. Affymetrix data, merged setting,
with CV-optimized features.

L MsigDB L KEGG C KEGG C NetC C I2D C HPRD

SG 0.1875 0.1250 0.6250 0.1875 0.1875 0.1250

Table S21. P-values of the Wilcoxon rank test. Affymetrix data, merged setting,
with the best 50 features.

L MsigDB L KEGG C NetC C I2D C HPRD

SG 0.3125 0.1875 0.1250 0.3125 0.3125

Table S22. P-values of the Wilcoxon rank test. Affymetrix data, merged setting,
with the best 100 features.

L MsigDB L KEGG C NetC C HPRD

SG 0.3125 0.3125 0.0625 0.3125

Table S23. P-values of the Wilcoxon rank test. Affymetrix data, merged setting,
with the best 150 features.

L MsigDB L KEGG C NetC C HPRD

SG 0.3125 0.3125 0.1250 0.3125
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Figure S9. Classification results for the ‘merged’ and ‘pairwise’ setting. In the
‘merged’ setting one Affymetrix dataset is set aside as test and the remaining four Affymetrix
dataset are merged into a single dataset. This is repeated until every one of the five datasets
acted as a test set. Top row: Results for the merged setting. The red lines indicate the
median. Bottom row: Only the five Affymetrix datasets were used in the pairwise setting.
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5 Dataset homogeneity affects single genes and composite clas-
sifiers similarly

Table S24. P-values of the Wilcoxon rank test. ER positive data, ’merged-setting’,
with CV-optimized features.

L MsigDB L KEGG C KEGG C NetC C I2D C HPRD

SG 0.8438 1.0000 0.2807 0.8438 1.0000 0.8438

Table S25. P-values of the Wilcoxon rank test. ER positive data, ’merged-setting’,
with the 50 best features.

L MsigDB L KEGG C NetC C HPRD

SG 0.6875 1.0000 0.6875 0.5625

Table S26. P-values of the Wilcoxon rank test. ER positive data, ’merged-setting’,
with the 100 best features.

L MsigDB L KEGG C NetC

SG 0.7874 1.0000 0.8438

Table S27. P-values of the Wilcoxon rank test. ER positive data, ’merged-setting’,
with the 150 best features.

L MsigDB L KEGG

SG 0.8438 0.8438
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Figure S10. Classification results of the ER positive data for the merged setting, only
using 100 and 150 features. A single dataset was set aside as test set while the remaining five
datasets were merged into a single training set. This was repeated until each dataset was employed as
left-out test set, resulting in six AUC values. A: 100 best features; B: 150 best features. The median is
indicated as a red line.
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6 Equal classification using real or randomized networks and
pathways
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Figure S11. The effect of randomized secondary data sources. AUC values obtained with the
feature extraction method Lee (L) on randomized KEGG and MsigDB pathways and AUC values
obtained with the feature extraction method Chuang (C) on randomized PPI networks (KEGG, NetC,
HPRD and OPHID). Shown are the AUC distributions for all 25 randomizations. For each
randomization of the database we obtain 30 AUC values from the comparison procedure.
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Figure S12. The effect of randomized secondary data sources. A: Lee-KEGG; B:
Lee-MsigDB; C: Chuang-HPRD; D: Chuang-NetC; E: Chuang-KEGG; F: Chuang-I2D.
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Figure S13. The difference in AUC values between the classifiers using randomized
networks and the classifiers using the ‘real’ network. For each method the difference of the
paired AUC values of the ‘real distribution’ and each ‘random distribution’ for each training-test
dataset pair is shown. AUC values obtained with the feature extraction method Lee (L) on randomized
KEGG and MsigDB pathways and AUC values obtained with the feature extraction method Chuang
(C) on randomized PPI networks (KEGG, NetC, HPRD and OPHID). Shown are the AUC
distributions for all 25 randomizations. For each randomization of the database we obtain 30 AUC
values from the comparison procedure.
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We calculated the one-sided paired Wilcoxon rank test between the ‘real’ AUC-value distribution
and each of the 25 ’randomized’ AUC value distributions. The null hypothesis is that the
real AUC distribution has a higher mean than the AUC distributions generated by employing
randomized network and pathway data. We used Bonferroni correction to account for multiple
testing. Tables S29-S33 show the p-values.

Table S28. P-values of the one-sided Wilcoxon rank test between the ‘real’ and
the ‘random’ AUC distributions for Lee applied to KEGG

Randomization 1 2 3 4 5 6 7 8 9 10

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11 12 13 14 15 16 17 18 19 20

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

21 22 23 24 25

1.0000 1.0000 1.0000 1.0000 1.0000

Table S29. P-values of the Wilcoxon rank test between the ‘real’ and the ‘random’
AUC distributions for Lee applied to MsigDB

Randomization 1 2 3 4 5 6 7 8 9 10

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11 12 13 14 15 16 17 18 19 20

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

21 22 23 24 25

1.0000 1.0000 1.0000 1.0000 1.0000

Table S30. P-values of the Wilcoxon rank test between the ‘real’ and the ‘random’
AUC distributions for Chuang applied to HPRD

Randomization 1 2 3 4 5 6 7 8 9 10

0.8737 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11 12 13 14 15 16 17 18 19 20

1.0000 1.0000 1.0000 0.9156 0.3666 0.0373 1.0000 1.0000 1.0000 1.0000

21 22 23 24 25

1.0000 1.0000 1.0000 1.0000 1.0000
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Table S31. P-values of the Wilcoxon rank test between the ‘real’ and the ‘random’
AUC distributions for Chuang applied to NetC

Randomization 1 2 3 4 5 6 7 8 9 10

1.0000 1.0000 1.0000 1.0000 1.0000 0.3621 1.0000 1.0000 1.0000 1.0000

11 12 13 14 15 16 17 18 19 20

0.2762 1.0000 1.0000 1.0000 1.0000 1.0000 0.0909 1.0000 1.0000 1.0000

21 22 23 24 25

1.0000 1.0000 1.0000 1.0000 1.0000

Table S32. P-values of the Wilcoxon rank test between the ‘real’ and the ‘random’
AUC distributions for Chuang applied to KEGG

Randomization 1 2 3 4 5 6 7 8 9 10

1.0000 1.0000 1.0000 1.0000 0.1817 1.0000 1.0000 1.0000 1.0000 1.0000

11 12 13 14 15 16 17 18 19 20

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

21 22 23 24 25

1.0000 1.0000 1.0000 1.0000 1.0000

Table S33. P-values of the Wilcoxon rank test between the ‘real’ and the ‘random’
AUC distributions for Chuang applied to I2D

Randomization 1 2 3 4 5 6 7 8 9 10

1.0000 0.0150 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11 12 13 14 15 16 17 18 19 20

0.3242 0.5613 0.9156 1.0000 0.6647 0.1817 1.0000 1.0000 0.9590 1.0000

21 22 23 24 25

1.0000 0.1241 0.7211 0.0015 0.0001

Using real and randomized networks and pathways - results on the original
data from Chuang et al. and Lee et al.

We employed the original breast cancer expression data (Wang and Vijver) and network and
pathway data from the studies by Chuang et al. and Lee et al. We tested whether randomizing
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the secondary data has any effect on the classification results. We only calculated the perfor-
mances of the NMC using Wang as training dataset and Vijver as test dataset or vice versa.
The expression datasets and the patients’ class labels were provided by Chuang et al. as they
were employed in their study. We found that the patients’ class labels did not correspond to
5-year survival. Instead the censoring variable was used to stratify the patients without taking
the time variable into account.
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Figure S14. The effect of randomized secondary data sources. Left: AUC values obtained
with the feature extraction method Chuang on the real NetC and randomized NetC. Right: AUC
values obtained with the feature extraction method Lee on the real and randomized MsigDB pathways.
In both cases we used the two original expression datasets and patient class labels as employed in
Chuang et al. (Vijver and Wang). We employed one dataset as training dataset (indicated on the
x-axis) and the other one as testing dataset. Apart from the combination Lee-MsigDB, training on
Wang and testing on Vijver; there are no significant differences between the AUC values obtained when
employing the original secondary data source and the AUC values obtained from 25 randomized
secondary data sources. (Tested with a one-sample t-test.)
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7 Current composite feature classifiers do not increase the sta-
bility of gene markers

7.1 The Fisher exact test as measure for overlap
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Figure S15. Feature stability when the top 100 and 150 features are selected. For each
method the p-value of the Fisher exact test was calculated between the gene sets extracted from two
different data sets. This was repeated for all pairwise combinations of data sets and these values are
represented as a dotplot with the median indicated as a red line. Plotted are the log p-values. A:
Feature stability when the top 100 features are selected. B: Feature stability when the top 150 features
are selected.

Table S34. P-values of the Wilcoxon rank test. Single genes features overlap
versus all network and pathway based features overlap across all pairs of datasets.

50 best features

L MsigDB L KEGG C NetC C I2D C HPRD

SG 0.9780 0.2293 0.0001 0.0001 0.0001

100 best features

L MsigDB L KEGG C NetC C I2D C HPRD

SG 0.5995 0.4887 0.0001 0.0001 0.0001

150 best features

L MsigDB L KEGG C NetC C I2D

SG 0.3894 0.5245 0.0001 0.0001
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Figure S16. Feature stability when corrected for gene set size. Box plots of the Jaccard
indices computed for all pairs of gene sets derived from two different data sets. The green box plots
represent the Jaccard indices for genes constituting composite features, while the blue box plots
(denoted as ‘Control for size SG’) represent the gene size corrected Jaccard indices for single-gene
classifiers. The white stars represent the mean of the distributions. A: Feature stability for the 100 best
composite features, B: Feature stability for the 150 best composite features.

We calculated the Wilcoxon rank test between the overlap of the genes in the composite features
and the control for size single-gene markers.

Table S35. P-values of the Wilcoxon rank test between the genes in the 50 best
composite features vs. control-for-size single-gene markers.

L MsigDB L KEGG C NetC C I2D C HPRD

0.0027 0.2769 0.3028 0.1354 0.8017

Table S36. P-values of the Wilcoxon rank test between the genes in the 100 best
composite features vs. control-for-size single-gene markers.

L MsigDB L KEGG C NetC C I2D C HPRD

0.0002 0.0103 0.5245 0.3303 0.0034

Table S37. P-values of the Wilcoxon rank test between genes in the 150 best
composite features vs. control-for-size single-gene markers.

L MsigDB L KEGG C NetC C I2D

0.0002 0.5245 0.0328 0.0020
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7.2 Overlap measured as Jaccard index

In addition to the Fisher exact test, we calculated the overlap between gene marker sets by
employing the Jaccard index. As in the main document, we also correct the size of the single
genes sets. For each data set and each feature selection approach employing secondary data
sources, we obtain a single best feature set consisting of n∗ features (networks, gene sets or
pathways) where each feature, in turn, consists of m genes. We then determine a size-matched
single gene set by choosing the best m single genes on that same expression data set.

A factor that influences the Jaccard index is the size of the starting set of genes from which
marker gene sets are chosen. In case of the single genes method, markers can be chosen from
the whole array, i.e. 11601 genes whereas in the case of the network and pathway based methods
only genes that are annotated in the specific secondary data source can be chosen. For this
reason we used a random subsample of the same size as the secondary data source as starting
set for the single genes. Assuming a secondary data source that contains N annotated genes,
then we proceeded as described in Algorithm 1 to determine the ‘control for size’ single gene
markers.

Algorithm 1 Select the control for size single genes markers

1: for R = 1 to 100 do
2: Randomly select N genes, call this set R

/* Iterate over all datasets di */
3: for i ∈ [d1, d2, . . . , dM ] do
4: Rank all genes in R based on di by their t-statistic from best to worst, call this ranked

list Li

5: Determine the number of genes in the top 50 networks for i, denote that by Ni

6: Select the top Ni genes in Li, denote this by Si

7: end for
8: Determine the Jaccard indices between all pairs of Si, i < j denoted by JijR, where R

represents the randomization
9: end for

10: Calculate for each dataset pair the average over the 100 values of JijR : J ij =
∑

R JijR
100
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Figure S17. Overlap of the network gene markers across the six datasets vs. the mean
Jaccard index of the control for size single genes sets across the six datasets. A: 50 best
features; B: 100 best features and C: 150 best features

Table S38. P-values of the Wilcoxon rank test between the genes in the 50 best
composite features vs. control-for-size single-gene markers drawn from random
subsampling.

L MsigDB L KEGG C NetC C I2D C HPRD

0.0012 0.0020 0.0946 0.0413 0.3028
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Table S39. P-values of the Wilcoxon rank test between the genes in the 100 best
composite features vs. control-for-size single-gene markers drawn from random
subsampling.

L MsigDB L KEGG C NetC C I2D C HPRD

0.0002 0.0103 0.8904 0.8469 0.1688

Table S40. P-values of the Wilcoxon rank test between genes in the 150 best
composite features vs. control-for-size single-gene markers drawn from random
subsampling.

L MsigDB L KEGG C NetC C I2D

0.0002 0.1205 0.3303 0.0302

8 PinnacleZ

Concerning the implementation of the algorithm by Chuang et al. above, we found that Pin-
nacleZ is not identical to the original implementation of the authors. Given the same input
parameters than in the original study, PinnacleZ usually identifies a larger number of significant
subnetworks.

The results returned by PinnacleZ are not reproducible. To calculate the null distributions
for the three statistical tests the implementation employs a random generator without fixing
the seed. Furthermore, it uses a single random generator from within multiple threads, which
makes the code non-deterministic even if one initializes the seed to a known value. This means
that PinnacleZ returns different outputs on identical runs.

Unfortunately, the original code for the network search and the cross validation used in
Chuang et al. was no longer available.


