
Addendum on ODE system to assess stability 

This addendum details the system of ordinary differential equations we have used to assess the 

stability of the stable states found by the logical network. 

It is possible that these singleton stable states would not be stable in a continuous analogue of the 

system. An analytical procedure to detect stability of these singletons is available [8], however given 

the relatively high number of nodes and thresholds in our model we opted for a numerical approach.  

We adapted the continuous framework for Boolean networks to one more suited for multivalue 

logic. We could not employ a single conversion method, but equalized the behaviour of the 

continuous function and that of its logical counterpart, i.e. some functions have dominant inhibitors 

whereas others use a weighted sum approach (so one inhibitory function isn’t dominating two 

activating ones). 

The value of all nodes is normalized to allow for a direct comparison with the results of the logical 

framework. In these equations below, we have used a threshold of ½ to discriminate between the 0 

and 1 levels of activation. For nodes with 3 levels (i.e. 0, 1 and 2), we have used ¼ and ¾ as 

thresholds. We assumed a constant relative degradation rate. 

This gives rise to the following system of equations: 
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with S&z, q, th' a sigmoidal function with steepness q and threshold value th. 
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Which is a slightly modified version of the Hill function where the term &1 � thC' ensures that the 

value at z = 1 is always 1 and the Heaviside function assures that negative values are zero. An 

alternative is to use a logistic function, which gave qualitatively similar results. 

This framework allowed us to relax the assumptions of the logical approach and to replace the 

Heaviside step functions with more gentle sigmoids. For the stable states shown in figure 4 of the 

manuscript, the stable state is not affected as long as the sigmoids are reasonably steep. Hence we 

can conclude that the results presented in our work are valid as long as the Boolean assumptions are 

not overly relaxed. 

The table shows the Euclidean distance between the continuous stable state and its logical 

counterpart (this state was also normalized: [0,1,2] becomes [0,0.5,1] and [0,1] remains unaltered). 

Small distances indicate good correspondence between the logical and continuum approach. 

  



 

q Resting Proliferating Hypertrophic 

1 4,080 3,741 1,708 

2 3,814 0,689 1,212 

3 1,881 0,472 1,042 

4 1,788 0,320 0,929 

5 1,939 0,217 0,854 

6 1,363 0,148 0,806 

7 1,265 0,102 0,776 

8 1,233 0,071 0,748 

9 0,045 0,050 0,063 

10 0,025 0,035 0,041 

11 0,015 0,025 0,028 

12 0,010 0,018 0,020 

13 0,006 0,013 0,014 

14 0,004 0,010 0,010 

15 0,003 0,007 0,007 

16 0,002 0,005 0,005 

17 0,001 0,004 0,004 

18 0,001 0,003 0,003 

19 0,001 0,002 0,002 

20 0,000 0,002 0,002 

 

Clearly, these states are only stable up to a point. As the Boolean assumptions (step functions) are 

relaxed the discrepancy with the Boolean state slowly increases. This is to be expected since the 

system evolves to Michaelis-Menten kinetics as q approaches 1. By consequence, the way nodes 

influence each other will be fundamentally changed, as 2 thresholds will no longer be possible. We 

feel that these simulations show that the stable states are not an artefact of the Boolean framework 

and are present in analogous continuous model in a relevant region of the parameter space.  
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