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1 NIH Background and Literature Review

The National Institutes of Health (NIH) was established in 1938 and has a budget of over $31 billion, of
which 80% is awarded in competitive research grants to more than 325,000 researchers through nearly
50,000 competitive grants at over 3,000 universities, medical schools, and other research institutions
(http://www.nih.gov/about/budget.htm). The NIH allocates funding among competing priorities by as-
sessing such priorities with respect to five major criteria [1]: (a) public needs; (b) scientific quality of the
research; (c) potential for scientific progress (the existence of promising pathways and qualified investiga-
tors); (d) portfolio diversification; and (e) adequate support of infrastructure (human capital, equipment,
instrumentation, and facilities). This framework was supported, with some additional recommendations,
by an Institute of Medicine (IoM) blue-ribbon panel in 1998 (see Table S1) [2].

Despite this framework and the IoM endorsement, NIH funding has been criticized as not being
aligned to disease burden and insufficiently effective [3–5]. For example, the impact of cancer has been
estimated as only 5% of total direct cost but 23% of all deaths [6], while extramural spending by the
National Cancer Institute (NCI) is about 15% of the total (http://report.nih.gov/). Sandler, et al. [7]
suggested that digestive diseases were relatively underfunded based on comparisons of disease burden as
measured by direct and indirect cost. Gross [8] noted that NIH funding is reasonably predicted by some
burden-of-disease metrics (disability-adjusted life-years or DALY, which are unavailable in time-series
form) [9]. Earmarks or target funding levels for specific diseases and programs have been suggested by
a number of policymakers [10]. Differences between current and projected disease burden complicate
allocation decisions, as in the growth phase of the AIDS epidemic [11].

Funding allocation decisions are not unique to the NIH; in a study similar to Gross et al. [8], Curry et

al. [12] has questioned the allocations of the Centers for Disease Control. Some have argued that the aca-
demic centres conducting research are ill-suited to encourage adoption of research results [13]. Even after
allowing for extensive private-sector translational investment, significant funding gaps between disease
states—as measured by new-drug approvals—exist [14]. The mismatch between per-capita healthcare
spending and outcome in the OECD countries lead Crow [15] to conclude that “What is missing is not
‘translational’ research, but stronger links between all types of knowledge-generating activities related to
health, and a focus on outcomes beyond science”. Teitelbaum noted the structural difficulties posed by
reallocating funding leading to a larger pool of researchers [16]. Also, social medicine investigators have
described gaps between researchers’ agendas and those of patients [17]. NIH leaders have noted that
funding basic research is itself a risky endeavour, involving trade-offs among all five of their funding crite-
ria, and may also include unstated secondary objectives, e.g., actively “balancing out” spending by other
agencies, charities, and the private sector [18]. Collectively, these factors impose significant challenges to
determining an ideal allocation of research funds.

Although the economic impact of biomedical research has been considered [19], the main focus has been
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on measuring value-added rather than determining optimal funding allocations. Murphy and Topel [20]
estimate U.S. economic surplus from improved health on the order of $2.6 trillion annually, with benefits
distributed unequally across age and gender, and suggest that in some cases, incremental benefits may
not exceed the cost of achieving them. Johnston et al. [21] found a return to society in the form of
averted treatment costs and public health benefits divided by cost of trial expenditures of 46% for clinical
trials at the National Institute of Neurological Disorders and Stroke (NINDS), where the returns or net
savings were generated by four of the 28 trials examined, and collectively exceeded the costs of not
only the clinical, but the entire program of research at NINDS during the study period. Cutler and
McClellan [22] computed returns of technological advances for five conditions and found net benefit for
four and costs equal to benefits in the fifth. Buxton et al. [19] suggested that the most appropriate
measures of the value of health care research are those that accurately identify valuable research, ascribe
the impact of such research, and value the impact, ideally in economic terms. Wooding et al. [23] used
payback techniques for 16 case studies and valued projects along five ordinal axes, noting wide variation
in research payback. Fleurence and Togerson [24] suggested that research should be allocated to provide
the most health benefits to the population, subject to equity considerations, and observed that subjective,
burden-of-disease, and payback methods all failed this test to some degree. Instead, they argue that a
method of information valuation is superior.

Modern financial portfolio theory—in which the expected return, risk (as measured by volatility), and
correlations of a collection of investment opportunities are taken as inputs, and the set of all portfolio
weights with the highest expected return for a given level of risk is the output—produces rational allo-
cations of limited resources among competing priorities. For developing this method in 1952, Markowitz
shared the Nobel Memorial Prize in Economic Sciences in 1990. The theory has had extensive applications
among mutual funds, pension funds, endowments, and sovereign wealth funds [25–27].

More recently, portfolio theory has been proposed as a means for conducting risk-sensitive cost-benefit
analysis for health-care budgeting decisions [28–33]. The motivation for these studies is the observation
that typical cost-effectiveness studies of healthcare programs ignore the uncertainty of realized costs,
which can be addressed by applying portfolio theory to balance the risks against the rewards of spe-
cific budget allocations. These studies present simplified frameworks for incorporating risk into the
healthcare budgeting process, e.g., two-security examples (although [32] does contain 11 hypothetical
cost/effect distributions) and do not contain full-scale empirical applications to realistic budgeting tasks.
As the authors note, applying portfolio theory to large public healthcare reimbursement problems can
be challenging. Patients may have differing and non-constant utility functions, and some argue that the
manager/administrator should only consider expected returns, allowing the patient and physician to con-
sider risk trade-offs at individual treatment levels, in which case the aggregate utility function (see Figure
S3) is implicit. In such an arrangement, if new treatments are more expensive, have incremental yield,
and a higher variance, we note the possibility of a net migration or “risk-ratcheting” toward high-cost,
high-risk therapies, a scenario of obvious interest. In a single-payer system, the administrator has little
ability to address portfolio composition if the portfolio is considered to be the entire patient population.
However, the method can be applied to a fixed population faced with competing risk/return/treatment
combinations for a given disease. This line of inquiry is focused on cost reimbursement, not on estimating
return on research for which the problem of stochastic return is more complex and degree of administrator
freedom possibly greater.

Despite the growing interest in measuring the return on biomedical research [34, 35], and the fact
that portfolio theory has already been applied to healthcare budgeting decisions, some sceptics continue
to argue against the use of any quantitative metrics in this domain. For example, Black [36] states
categorically that “[t]he biomedical ‘payback’ approach is certainly inappropriate and attempts to impose
it should be strenuously resisted. Instead, a qualitative approach should be applied that takes into account
the ‘slow-burning fuse’ and avoids simple attribution of cause and effect”. While such a response may
be acceptable for certain types of funding, it is becoming increasingly untenable with respect to public
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funds and government support, which, by law, almost always require some form of cost/benefit analysis,
performance attribution, and oversight.

2 Data Issues

Measures of Disease Burden. As a measure of disease burden, YLL captures only lethal illness by
definition; chronic illness enters the optimization process only indirectly, mortality in the young is more
heavily weighted than that of the elderly, and quality-of-life is not captured at all. The choice of YLL
is motivated by several factors: long time-series observations of YLL are readily available, they cover
a large population, and they address the entire spectrum of diagnoses categorized under the ICD (see
http://www.who.int/classifications/icd/en/). Broader measures of burden of disease such as disability
adjusted life years (DALY) [8] and quality-adjusted life years (QALY) [37, 38] have been proposed, but
historical time series for such measures are not yet available. As better measures are developed (e.g.,
incidence, prevalence, physician visits, hospitalization, DALY, QALY), portfolio-optimization methods
may be applied to them as well through appropriately defined “returns”. Should datasets covering not
only age and cause of death but also ante-mortem symptoms become available, mean-variance-efficient
allocations would likely place significant weight on improvements in the care of less-lethal chronic diseases.

Definition of Return on Investment. Even if YLL is an appropriate measure of disease burden, the
corresponding construction of the ROI to NIH funding is a noisy estimate of the impact of research dollars
on improvements in YLL in several respects. First, NIH funding typically supports basic research and a
few clinical trials, not the subsequent translational efforts required to prevent disease and affect practice.
Therefore, the relation between NIH spending and changes in YLL is not nearly as direct as the relation
between investing in the stock market and changes in one’s net worth. Moreover, to the extent that NIH
appropriations are systematically used to complement private spending to allocate total funding across
diseases more fairly [18], the relation between NIH funding and subsequent YLL improvements may be
even noisier, and may require modelling private-sector expenditures as a separate but complementary
portfolio-optimization problem with an objective function and constraints that are linked to those of the
NIH.

Second, the standard portfolio-optimization framework implicitly assumes a multiplicative relation
between dollars invested today and dollars returned tomorrow. Moreover, the multiplier is constant and
unaffected by the amount of the investment, so that doubling the investment will typically double the ROI
of that investment. However, in the case of NIH funding allocations, it is not at all clear that doubling the
budget of a given Institute will double its impact on future changes in YLL—the output of translational
medicine is not necessarily linear in its funding costs. In fact, a doubling of NIH expenditures did occur
between 1998 and 2003, when its annual spending grew from $14 billion to $27 billion, and while it is
still too early to assess the full impact of this increase, Couzin and Miller [39] and Freeman and van
Reenen [40] have observed a number of disruptive effects of this sudden increase and equally sudden
decline in funding. The fact that scientific research programs cannot be initiated or dismantled quickly
implies non-linearities in the relation between expenditures and even the simplest measures of research
output, e.g., the number of journal publications. In fact, the NIH has stated that appropriations are
partly allocated to “balance out” the effects of other entities’ activities [18], which can create complex
non-linearities in the relation between NIH allocation decisions and future changes in YLL.

Third, the fact that translational research takes time and significant non-NIH resources implies addi-
tional noise in associating funding decisions in year t−q with improvements in YLL in years t through
t+4. Moreover, improvements in YLL may be due to unrelated factors such as changes in cultural norms
(including consumption of alcohol and cigarettes), economic conditions (such as recessions vs. expan-
sions), and public policy (such as vaccine programs and mandates for automobile, home, and workplace
safety).
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The estimates of q were an initial attempt to link appropriation with outcome in a systemic and
non-discretionary manner, but they were derived heuristically from regulatory, appropriation, and epi-
demiological data which may not be stationary or predictive. For example, if the Food and Drug Ad-
ministration’s capacity for reviewing new-drug applications is held constant and applications double,
substantial increases in regulatory queuing would be expected, even with the added resources gener-
ated by the Prescription Drug User Fee Act (PDUFA, see http://www.fda.gov/ForIndustry/UserFees/
PrescriptionDrugUserFee/default.htm).

Finally, in converting changes in YLL to dollar amounts, per-capita real GDP was used as the “con-
version factor” irrespective of age, despite the fact that children and retired individuals are economically
less active.

While these caveats highlight the imprecision with which the impact of research spending is measured,
they also provide direction for developing better metrics. In particular, the underlying science of each
grant implies a particular set of dynamics for translation and YLL impact, and with more sophisticated
models of such dynamics, the returns to fundamental research should be measurable with greater accuracy.

3 Mean-Variance Portfolio Optimization

In the mean-variance framework, we seek to find the best trade-offs between risk and expected return
by varying the portfolio weights ω to trace out the locus of mean-variance combinations that cannot
be improved upon, i.e., that are “efficient”. This set of efficient portfolios, also known as the “efficient
frontier” is formally defined as the curve in mean-variance (or mean-standard deviation) space corre-
sponding to all portfolios with the highest level of expected return for a given level of variance (the blue
curve in Figure S3). This efficient frontier defines the set of allocations that cannot be improved upon
from a mean-variance perspective, and the optimal allocation is a single point on this frontier that is
determined by the investor’s desired volatility level or risk tolerance. More formally, an investor with
standard mean-variance preferences is assumed to prefer portfolios with greater expected return and lower
variance, with diminishing returns in each (so that progressively greater increments of expected return
must be offered to the investor to induce him to accept increases in the same increment of risk as the
level of risk rises). This type of preferences generates so-called “indifference curves” (non-intersecting
curves in mean-variance space that trace out combinations of mean and variance for which an individual
is indifferent) that are upward sloping and convex (see Figure S3). The optimal portfolio for a given set
of indifference curves is the tangency point T of the efficient frontier with the most upper-left indifference
curve (curve U1 in Figure S3).

To compute the efficient frontier, the following optimization problem must be solved (we maintain the
following notational conventions: (1) all vectors are column vectors unless otherwise indicated; (2) matrix
transposes are indicated by a prime superscript, hence ω

′ is the transpose of ω; and (3) vectors and
matrices are always typeset in boldface, i.e., X and µ are scalars and X and µ are vectors or matrices):

Minimize
ω

ω
′Σω

subject to ω
′
µ ≥ µo , ω

′
ι = 1 , ω ≥ 0

(S1)

where ι is an (n×1)-vector of 1’s and µo is an arbitrary fixed level of expected return. By varying µo

between a range of values and solving the optimization problem for each value, all the efficient allocations
ω

∗ may be tabulated, and the locus of points in mean-standard-deviation space corresponding to these
efficient allocations is the efficient frontier depicted in blue in Figure S3 . This so-called Markowitz
portfolio optimization problem involves minimizing a quadratic objective function with linear constraints,
which is a standard quadratic programming (QP) problem that can easily be solved analytically in some
cases [41], and numerically in all other cases by a variety of efficient and stable solvers [42, 43].
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One additional refinement to address the well-known issue of “corner solutions” (in which several
components of ω∗ are 0) that often arise in the standard portfolio-optimization framework is proposed.
While such extreme allocations may, indeed, be optimal with respect to the mean-variance criterion,
they are more often the result of estimation error and outliers in the data [44]. Moreover, even in the
absence of estimation error, mean-variance optimality may not adequately reflect other objectives such
as social equity across disease groups or distance from current status quo in allocation. To incorporate
such considerations, a “regularization” technique is applied in which the objective function is penalized
for allocations that are far away from the average allocation policy. Specifically, consider the following
regularized version of the standard portfolio-optimization problem:

Minimize
ω

ω
′Σω + γ ‖ω − ωNIH‖

2

subject to ω
′
µ ≥ µo , ω

′
ι = 1 , ω ≥ 0

(S2)

This formulation is essentially a dual-objective optimization problem in which the first objective is to

minimize the portfolio’s variance (ω′Σω), and the second objective is to minimize the difference from the

average NIH allocation policy (‖ω − ωNIH‖2) and the non-negative parameter γ determines the relative
importance of these two objectives. Larger values of γ yield optimal weights that are closer to average
NIH allocation but which correspond to portfolios with greater volatility, and smaller values of γ yield
optimal weights that may be more concentrated among a smaller subset of groups, but which imply lower
portfolio volatility.

4 Results Including HIV and AMS

Since HIV and AMS time series have shorter histories, we set p=1 for these groups and calculate their
lags by the same method as for the other groups. The corresponding lags are shown in Table S5.

Summary Statistics. Summary statistics of the ROI for HIV based on years 1996–2007 (Table S5)
show that HIV presents a notable instance of non-stationary behaviour. Its mean ROI of 90.8 is an order
of magnitude larger than the second-best-performing group and its standard deviation of 167.1 is 50 times
larger than the group with the second-largest standard deviation.

Efficient Frontiers. In Figure S4 , the efficient frontiers for the single- and dual-objective optimiza-
tion problems are plotted in mean-standard-deviation space for the 9-group cases with and without the
dementia effect. For each of these frontiers, the mean-standard-deviation points for the same set of
portfolios as in the main paper are also plotted.

Figure S4 a shows that the distribution of ROI of the HIV group is skewed, and very sensitive to effects
of several years of remarkable out-performance immediately after the introduction of protease inhibitors.
Therefore, HIV yields an influential or “high-leverage” set of data points with estimated means and
volatilities that are outliers.

The top left sub-panel of Table S6 shows that the single-objective optimization does yield sparse
weights as expected. For example, the minimum-variance portfolio allocates to only three groups: 75%
to NMH, 15% to CNS, and 10% to ONC. By minimizing variance, irrespective of the mean, this portfolio
allocates funding to groups with least variability in YLL improvements. The efficient-25% portfolio is
even less diversified, with non-zero weights in only two groups: 84% to HLB and 16% to HIV. As in the
case with seven groups, it is not surprising to see HLB playing a much bigger role given its apparent
historical success in reducing YLL and the greater emphasis on expected return for this portfolio.

With still more emphasis on expected return, the efficient-50% portfolio also gives non-zero weights
only to these two successful groups: 57% to HLB and 43% to the higher risk, higher mean-return HIV.
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The efficient-75% portfolio gives even higher weight to HIV, 72% and 28% to HLB. However, as discussed
above, the historical performance of HIV is an outlier that may not be representative of this group’s
future impact on YLL. In addition, the dementia effect may underestimate the performance of CNS
disease group, hence the lower panel of Table S6 reports corresponding optimal-portfolio results without
the dementia effect. In the single-objective case, the efficient-25, 50% and 75% portfolios are almost
unchanged given the historical outperformance of HIV, while the lower risk minimum variance portfolio
is also concentrated to 3 groups but with much more significant weight 26% to the CNS group.

Table S6 also contains the optimal portfolios for the dual-objective case (with γ = 10) in the right
sub-panels (see Figures S4b and S4d). These cases correspond to portfolios that trade off closeness to
the average NIH allocation policy with better risk-adjusted rewards. Now we observe that for both
upper and lower sub-panels corresponding to the 9-group with/without the dementia effect optimiza-
tion, respectively, the weights are less concentrated than in the single-objective case. For example, the
minimum-variance portfolio without the dementia effect portfolio now allocates funding to 7 groups,
with weights ranging from 7% to 28%. However, even in this case, the efficient-75% portfolio is still
extreme, allocating weights only to HIV and HLB. Therefore, special care must be exercised in selecting
the appropriate point on the efficient frontier.

5 Bayesian Portfolio Optimization

Let Σo be a symmetric matrix, where the (i, j) component is the experts’ estimation of the covariance
between the returns of the corresponding disease groups. Then, we can find its projection in the convex
cone of positive semi-definite matrices, that is the positive semi-definite matrix Σ̄ , whose distance from
Σo (defined as the sum of the squares of the differences of the corresponding components of the matrices)
is minimized. Then we can formulate the following regularized optimization problem:

Minimize
ω

ω
′Σω + γω′Σ̄ω

subject to ω
′
µ ≥ µo , ω

′
ι = 1 , ω ≥ 0 .

Higher moments of returns (beyond mean and variance) and different measures of risk could also be
accommodated [45]. In contrast to financial markets, we believe that it is reasonable to assume that the
forecast correlation and covariance is comparatively stable over time, and that exceptions to this belief,
such as epidemics, should be reasonably identifiable.

6 Summary Statistics

To develop intuition for possible patterns between funding allocation and improvements in YLL, the
cumulative sums of these two variables are plotted in Figure S5 . Notable findings include a sustained
improvement in cardiovascular and lung (HLB) mortality and a long period of relative under-performance
in oncology (ONC) followed by a turnaround.

The eigenvalues and eigenvectors of the estimated covariance matrices, summarized in Figure S6,
suggest that dimension-reducing strategies such as linear factor models may be useful in this domain.
However, without a more detailed understanding of the common drivers of progress (if any) among the
groups, dimension reduction via principal components or factor analysis may yield misleading results due
to overfitting.
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7 Limitations of Portfolio Theory

Even within the exact domain for which it was developed, portfolio theory has several well-known lim-
itations, of which the most obvious is the possibility that the mean-variance criterion may not, in fact,
be the appropriate objective function to be optimized. While there is little disagreement that higher
expected ROI is preferable to its alternative, the trade-off between expected ROI and risk is fraught with
subtleties involving specific psychological, perceptual, and behavioural mechanisms of individuals and
groups. Because of these considerations, mean-variance analysis is often considered an approximation
to a much more complicated reality—a starting point for investment allocation decisions, not the final
answer.

Another known limitation of portfolio theory is the fact that the input parameters (µ,Σ) must be
estimated from historical data, and estimation error in these parameter estimates can lead to portfolios
that are unstable and sub-optimal [25]. One common approach to addressing this problem in the financial
context is to employ prior information regarding the input parameters, thereby reducing the dependence
on historical data. Using Bayesian methods, expert opinions regarding the statistical properties of the
individual asset returns can be incorporated into the portfolio optimization process [46, 47] (see also the
discussion of Bayesian portfolio optimization above).
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