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Appendix S1

A. Derivation of the risk sensitive model

In this section, we derive the risk sensitive optimal control for the one-target and two-target task. For the

basic model with end cost only, this solution can be obtained analytically. The dynamics of the control

problem is given by the stochastic differential equation dy = u(y, t)dt + dξ (see equation 1). The total

cost function of this control problem is equal to the sum of an end cost function and a cumulative control

cost function, resulting in

Ctotal =

〈
Cf (yf ) +

∫ tf

0

1
2Quu(y(t), t)2dt

〉
y0

,

(see equation 4) with end cost function

Cf (yf ) =

{
1
2Qf (yf + a)2 if yf ≤ 0
1
2Qf (yf − a)2 if yf > 0

= 1
2Qf (|yf | − a)2

with a ≥ 0. Note that a = 0 gives the control problem for the one-target task and a = 0.5 for the

two-target task. As derived in [1], the optimal cost-to-go satisfies

Jθ(y, t) =

{
〈Cf (yf )〉y if θ = 1

νQu

− νQu
1−θνQu lnZθ(y, t) if θ 6= 1

νQu

where

Zθ(y, t) =

〈
exp

(
− 1− θνQu

νQu
Cf (yf )

)〉
y

and y represents the path for uncontrolled dynamics. A general derivation of the optimal cost-to-go in

stochastic optimal control problems can be found in [1]. First, we consider the case θ = 1
νQu

. For this

case, the optimal cost-to-go can be rewritten by substituting the end cost function, which yields

Jθ(y, t) =
〈
1
2Qf

(
|yf | − a

)2〉
y

= 1
2Qf

(
〈y2f 〉y − 2a〈|yf |〉y + a2

)
.

The expectation value 〈y2f 〉y is given by

〈y2f 〉y =

〈(
y +

∫ tf

t

dξ
)2〉

y

= y2 + ν(tf − t).

The distribution of |yf | conditioned on y is a reflected Brownian motion [2] and reads
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P
(
|yf | ∈ dy′

∣∣y) =

1√
2πν(tf − t)

(
exp

(
− (|y|+ y′)2

2ν(tf − t)

)
+ exp

(
− (|y| − y′)2

2ν(tf − t)

))
dy′ (y ≥ 0).

We use this distribution to find the expectation value 〈|yf |〉y, which is given by

〈|yf |〉y =

∫ ∞
0

y′P
(
|yf | ∈ dy′

∣∣y)
=

2ν(tf − t)√
2πν(tf − t)

exp

(
− y2

2ν(tf − t)

)
+ y erf

(
y√

2ν(tf − t)

)
.

The optimal control u∗ is proportional to the partial derivative of the optimal cost-to-go Jθ(y, t) to y and

is given by

u∗(y, t) = − 1

Qu

∂

∂y
Jθ(y, t)

=
Qf
Qu

(
erf

(
y√

2ν(tf − t)

)
a− y

)
.

Next, we consider the case θ 6= 1
νQu

. Zθ(y, t) is a path integral that satisfies

Zθ(y, t) =

〈
exp

(
− Qf (1− θνQu)

2νQu
(|yf | − a)2

)〉
y

=

∫ ∞
0

exp

(
− Qf (1− θνQu)

2νQu
(y′ − a)2

)
P
(
|yf | ∈ dy′

∣∣y)
= ψ−(y, t) + ψ+(y, t)

where

ψ±(y, t) =
1√

2πν(tf − t)

∫ ∞
0

exp

(
− Qf (1− θνQu)

2νQu
(y′ − a)2 − (|y| ± y′)2

2ν(tf − t)

)
dy′.

We define two new functions:

K(t) =
Qf

Qu + (1− θνQu)Qf (tf − t)

and

µ∓(y, t) =
K(t)Qu
Qf

(
∓ |y|+ (1− θνQu)QfQ

−1
u (tf − t)a

)
.
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We use these functions to rewrite the expression for ψ±(y, t), which yields

ψ±(y, t) =
1√

2πν(tf − t)
exp

(
− K(t)(1− θνQu)

2ν
(|y| ± a)2

)∫ ∞
0

exp

(
− Qf (y′ − µ∓(y, t))2

2ν(tf − t)K(t)Qu

)
dy′

=

√
K(t)Qu
Qf

exp

(
− K(t)(1− θνQu)

2ν
(|y| ± a)2

)(
1
2 + 1

2erf

(√
Qf

2ν(tf − t)K(t)Qu
µ∓(y, t)

))

under the condition that

0 < Qu + (1− θνQu)Qf (tf − t).

Otherwise ψ±(y, t) =∞. The optimal control is given by

u∗(y, t) =
∂

∂y

ν

1− θνQu
lnZθ(y, t)

= Zθ(y, t)
−1
(

ν

1− θνQu
∂

∂y
ψ−(y, t) +

ν

1− θνQu
∂

∂y
ψ+(y, t)

)
.

Finally, we rewrite the optimal control in terms of K(t) and ψ±(y, t). Let

ν

1− θνQu
∂

∂y
ψ±(y, t)

=−K(t)
(
y ± a sign(y)

)
ψ±(y, t)∓

sign(y)√
2πν(tf − t)

K(t)Qu
Qf

ν

1− θνQu
exp

(
− K(t)(1− θνQu)(|y| ± a)2

2ν
− Qfµ∓(y, t)2

2ν(tf − t)K(t)Qu

)
=−K(t)

(
y ± a sign(y)

)
ψ±(y, t)∓

sign(y)√
2πν(tf − t)

K(t)Qu
Qf

ν

1− θνQu
exp

(
− |y|2

2ν(tf − t)
− 1− θνQu

2νQu
Qfa

2

)
.

After substituting this equation we find

u∗(y, t) = −K(t)

(
y + a sign(y)

−ψ−(y, t) + ψ+(y, t)

ψ−(y, t) + ψ+(y, t)

)
.

We can verify that this equation equals the case θ = 1
νQu

, since

lim
θ→ 1

νQu

ψ±(y, t) = 1
2 + 1

2erf

(
∓|y|√

2ν(tf − t)

)
.

The optimal control for the case θ = 1
νQu

is given by
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lim
θ→ 1

νQu

u∗(y, t) = −Qf
Qu

(
y − a sign(y) erf

(
|y|√

2ν(tf − t)

))
= −Qf

Qu

(
y − a erf

(
y√

2ν(tf − t)

))
.

Note that the optimal control for the standard model is found by taking θ = 0.

B. Model performance of the risk sensitive model

In the standard model, the performance criterion of minimizing the expected cost-to-go (equation 4 of

the main article) assumes that the certainty equivalent, i.e., the maximal cost one is willing to pay for

certain rather than the uncertain cost associated to the control problem, equals the expected cost-to-go.

The resulting control problem is said to be risk neutral. When the certainty equivalent is higher or lower

than the expected cost-to-go, the performance criterion is adjusted to minimize an exponentially weighted

cost-to-go [3]:

1

θ
ln

〈
exp

(
θCf (yf ) + θ

∫ tf

0

1
2Quu(y(t′), t′)2dt′

)〉
y0

(S1)

where θ is a parameter that quantifies the risk sensitivity. If θ is negative then the certainty equivalent is

lower than the expected cost-to-go and the controller is said to be risk seeking, and if θ is positive then

the certainty equivalent is higher than the expected cost-to-go and the controller is said to be risk averse,

and the case θ = 0 is the risk neutral case [4].

In the control task with one target located at zero, we choose an end cost function that is quadratic

around the target location (equation 3 with y∗ = 0). The optimal control is given by

u∗(y, t) = −K(t)y

with

K(t) =
Qf

Qu + (1− θνQu)Qf (tf − t)
(S2)

under the condition that

0 < Qu + (1− θνQu)Qf (tf − t), (S3)

otherwise no optimal control exists (see section A). In the control task with two targets located at −0.5

and +0.5, we choose an end cost function that is quadratic around the target locations (equation 8). The

optimal control is given by
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u∗(y, t) = −K(t)
(
y − a

)
(S4)

where K(t) is as given by equation S2,

a = −a sign(y)
−ψ−(y, t) + ψ+(y, t)

ψ−(y, t) + ψ+(y, t)
,

with a = 0.5 and

ψ±(y, t) =
√

K(t)Qu
Qf

exp
(
− K(t)(1−θνQu)

2ν (|y| ± a)2
)(

1
2 + 1

2erf

(√
Qf

2ν(tf−t)K(t)Qu
µ∓(y, t)

))
= K(t)Qu

Qf

(
∓ |y|+ (1− θνQu)QfQ

−1
u (tf − t)a

)
,

and under the condition (S3) for the optimal control to exist (see section A for a derivation). We obtain

the optimal control for the case that θ = 1
νQu

by taking the limit:

lim
θ→1/νQu

u∗(y, t) = −Qf
Qu

(
y − a erf

(
y√

2ν(tf − t)

))
.

We consider the risk sensitive model as an alternative to the extended model to explain the subjects’

behavior. For the noiseless condition (ν = 0) the dynamics is completely deterministic and the risk sen-

sitive model reduces to the standard model: in the absence of noise, the expectation value in equation S1

vanishes and the exponentially weighted cost reduces to the total cost in the standard model. Therefore,

we do not include the noiseless condition in this section. Note that the extended model does give a

different prediction than the standard model for ν = 0. The results show that the extended model yields

a significantly better prediction than the standard model (figures 3 and 5 of the main article).

For a noise amplitude ν > 0, the risk sensitive model gives different predictions than the standard

model. Figure S1 shows the model performance of the risk sensitive model compared to the standard

model for the one-target (left panel) and two-target task (right panel). Values are given as the median

over 100 cross-validation runs. The lower and upper error bars represent the 25th and 75th percentile,

respectively. Conditions for which the test error of the standard model was significantly different from the

test error of the risk sensitive model (two-sided sign test, α = 0.05) are indicated by ∗∗ (p < 0.01). For all

subjects and tasks, the test error of the standard model minus the test error of the risk sensitive model

is significantly larger than zero. Thus, the risk sensitive model gives a significantly better prediction of

the subjects’ behavior than the standard model.

Figure S2 shows the value of the risk-sensitivity parameter θ for all subjects in the one-target (top

panel) and two-target task (bottom panel). Values are given as the median over 100 cross-validation runs.

The lower and upper error bars represent the 25th and 75th percentile, respectively. Subsequent data

points in triplets correspond to noise amplitudes ν of 0.009, 0.04 and 0.08, respectively. For the majority

of the subjects, the risk sensitivity decreases from highly risk sensitive for ν = 0.009 to approximately

risk neutral for ν = 0.08. From these observations we conclude that the risk sensitive model can describe
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the subject behavior at nonzero noise levels, although it would require a risk sensitivity that depends on

the noise level.

C. Infinite horizon models

The stochastic optimal control model considered by Braun et al. [5] is discrete in time, has an infinite

time horizon, a dynamics of the form

yt+1 = yt + ut + “signal-dependent noise”,

and a cost function of the form

Cost J = 1
2

〈 ∞∑
t=0

(
Qy2t +Ru2t

)〉
, (S5)

where Q and R are constants. The noise is signal-dependent [6], which means that the noise is zero when

the state y is zero. This implies that if the state is zero (yt = 0) then it is optimal to perform zero

control (ut = 0) at the present time (t) and all future times, because by doing so the state will remain

zero (yt+1 = yt + ut + “noise” = 0 + 0 + 0), and the contribution to the cost is zero (Qy2t + Ru2t = 0)

when the state and the control are zero. An important consequence of using signal-dependent noise is

that the cost will not blow up as time proceeds.

If the noise is not signal-dependent, as it is in our experiments, the cost (equation S5) will blow

up either due to
∑∞
t=0〈Qy2t 〉 blowing up because the state is perturbed by noise that is not sufficiently

corrected for by the control, or due to
∑∞
t=0〈Ru2t 〉 blowing up because perturbations of the state due to

noise are too much corrected for. Therefore, we consider an alternative infinite horizon model without

signal-dependent noise. The dynamics of the control problem are described by

dyt = u(t)dt+ dξ

with a cost function

Ctotal = lim
tf→∞

1

tf

〈∫ tf

0

1
2Quu(t)2dt+

∫ tf

0

1
2QyV (y(t))dt

〉
y0

.

This is the expected cost in the finite horizon model with end time tf , but with no end cost and averaged

over time and in the limit where the end time goes to infinity. The cost function optimized over the

control is the optimal expected cost-to-go J and satisfies the Hamilton-Jacobi-Bellman equation

min
u

(
1
2Quu

2 + 1
2QyV + u

∂

∂y
J + 1

2ν
∂2

∂y2
J

)
= c

where c is some constant [7]. It follows that the optimal control u∗ satisfies
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Figure S1. Model performance of the risk sensitive model. Test error of standard model minus

test error of risk sensitive model (’test error difference’) for all subjects and noise amplitudes, for the

one-target (left panel) and two-target task (right panel). Subject S5 has been discarded. Values are

given as the median over 100 cross-validation runs. The lower and upper error bars represent the 25th

and 75th percentile, respectively. Conditions for which the test error of the standard model was

significantly different from the test error of the risk sensitive model (two-sided sign test, α = 0.05) are

indicated by ∗∗ (p < 0.01).
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Figure S2. Risk sensitivity. Value of the risk-sensitivity parameter θ in the one-target (top panel)

and two-target task (bottom panel). Subject S5 has been discarded. Values are given as the median

over 100 cross-validation runs. The lower and upper error bars represent the 25th and 75th percentile,

respectively. Each subsequent data point corresponds to a noise amplitude ν of 0.009, 0.04 and 0.08,

respectively.

u∗ = −Q−1u
∂

∂y
J (S6)

and that the optimal expected cost-to-go J satisfies the HJB equation

− 1
2Q
−1
u

( ∂
∂y
J
)2

+ 1
2QyV + 1

2ν
∂2

∂y2
J = c.

Since the path cost function V does not depend on time, there is no explicit time dependence in the HJB

equation, hence its solution J will also not explicitly depend on time. In the one-target task, we choose

a path cost of the form

V (y) =
(

tanhDy
)2
,

where D is a constant. Using the relations

∂

∂y
ln coshDy = D tanhDy

∂2

∂y2
ln coshDy = D2 1

(coshDy)2

= D2
(
1− (tanhDy)2

)
,

one verifies by substitution that the optimal expected cost-to-go is given by
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J(y) = G log coshDy

with

G = − 1
2QuνD + 1

2

√
Q2
uν

2D2 + 4D−1QuQy. (S7)

Note that G is positive definite, unless the path cost parameter Qy equals zero, then G also equals zero

and the optimal control is to perform no action. The optimal control follows from equation S6 and is

given by

u∗(y) = −Q−1u GD tanhDy.

In the two-target task, we choose a path cost function of the form

V (y) =


(

tanh
(
D(y + a)

))2
if y ≤ 0(

tanh
(
D(y − a)

))2
if y > 0

where the targets are located at y = −a and y = a. One verifies in a similar way as in the one-target

case that the optimal expected cost-to-go is given by

J(y) =

{
G log coshD(y + a) if y ≤ 0

G log coshD(y − a) if y > 0

with G given by equation S7. The optimal control follows from equation S6 and is given by

u∗(y) =

{
−Q−1u GD tanhD(y + a) if y ≤ 0

−Q−1u GD tanhD(y − a) if y > 0.

Note that the optimal control shows no symmetry breaking: it is always optimal to steer towards the

nearest target. The optimal control in the infinite-horizon model with path cost is similar to the optimal

control in the finite horizon model with path cost. When the noise level ν is low, in either model the

pace in which to move towards a target is dominated by the path cost, which means for both models the

optimal behavior is to arrive at the target before the end time. When the noise level is high, then in

either model we find that the control in absolute value is fairly small, which is explained by the fact that

the influence of the noise is strong relative to the control.
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