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1 Analysis of steady states for pA = pB: existence of a critical

value pA = pB = pc.

For notational simplicity we replace nA by x and nB by y. The mean field equations describing the
system with pA = pB = p, 0 < p ≤ 0.5 then are:

dx

dt
= −xy + (1− x− y − 2p)2 + x(1− x− y − 2p) +

3

2
p(1− x− y − 2p)− px

dx

dt
= −xy + (1− x− y − 2p)2 + y(1− x− y − 2p) +

3

2
p(1− x− y − 2p)− py

(1)

where nAB = 1 − x − y − 2p. In the steady state, dx/dt = dy/dt = 0, and the resulting equations
can be solved to yield four solutions for (x, y). Out of these one solution lies outside the valid range
for all feasible values of p, i.e., 0 < p ≤ 0.5. The valid fixed points for Eqs. 1 are:
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Since the solutions are symmetric in x and y, in order to investigate the range of p over which
these solutions are valid, we restrict our analysis to y. The solution y1 is valid for all values of p. For
y2, y3 to be valid solutions, we require U(p) = 1 − p2 − 6p ≥ 0. U(p) is a monotonically decreasing
function for p > 0, and the value of p at which U(p) first crosses zero is the critical point.

pc =
√
10− 3 ≅ 0.1623. (2)

Thus, there exist three fixed points in the range [0, pc]. In the range (pc, 0.5] only one valid fixed
point exists, viz. (x1, y1).

We can further examine the stability of the obtained fixed points. Linear stability analysis yields
the following stability matrix:

Q =

[

−1− p
2 −2 + 2y∗ + 5

2p
−2 + 2x∗ + 5

2p −1− p
2

]

(3)

where (x∗, y∗) is the fixed point under consideration.
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The eigenvalues of the stability matrix at the fixed point are given by λ = −(2 + p) ±
√

26p2 + (20(x∗ + y∗)− 36) + 16(1− x∗ − y∗ + x∗y∗) , and examination of the real part of these
eigenvalues indicates that (x2, y2) and (x3, y3) are stable fixed points, and (x1, y1) is an unstable
fixed point (saddle point) for p ≤ pc = 0.1623. For p > pc, (x1, y1), the only valid fixed point, is a
stable fixed point. Figure S1 shows the movement of the fixed points in the phase space as a function
of p.

2 Existence of a cusp point

Suppose that a one-dimensional parameter(α) dependent system

dx

dt
= f(x;α), x ∈ ℜ1, α ∈ ℜm (4)

with smooth function f , has an equilibrium at x = 0 for α = 0, and let fx(0; 0) = 0 and fxx(0; 0) = 0
hold. Further, assume that the non-degeneracy conditions (e.g., fxxx(0; 0) 6= 0) are satisfied. Then
the system undergoes a cusp bifurcation at x = 0 [1].

We prove that such a cusp bifurcation is encountered in our system (i.e., Eq. 1) at pA = pB = pc
as we move along the diagonal in parameter space (pA = pB). Note that our system is two-
dimensional. To be able to use the above theory, we first need to reduce the dimensionality of our
system. The Center Manifold Theorem [2] guarantees the existence of a one-dimensional center
manifold to which we can restrict our system, and such a system preserves the same behavior as the
original system in the vicinity of the steady-state under consideration. Once we get the restricted
system, we can perform the usual bifurcation analysis in one-dimensional system. Following this
idea, we first shift the coordinates such that the origin is located at the critical point we found
from the pB = pA case (for simplicity, we denote pA by p and pB by r), i.e., (x0, y0; p0, r0) =
(0.2565, 0.2565;

√
10 − 3,

√
10 − 3). In the shifted coordinates, the eigenvalues and eigenvectors

are given by Λ = [0;−2.1623] and V = [−0.7071, 0.7071; 0.7071, 0.7071]. Using transformation
[x̃ ỹ]T = V [x y]T and after some algebraic manipulations, we obtain in the new co-ordinate system:

dx̃

dt
= 0.7071(1.5p+ 0.2434)(p+ r + 1.414ỹ− 0.1623)

−0.7071(1.5r+ 0.2434)(p+ r + 1.414ỹ− 0.1623)

−0.7071(0.7071x̃+ 0.7071ỹ+ 0.2566)(p+ r + 1.414ỹ− 0.1623)

−0.7071(p+ 0.1623)(0.7071x̃+ 0.7071ỹ+ 0.2566)

+0.7071(0.7071ỹ− 0.7071x̃+ 0.2566)(p+ r + 1.414ỹ− 0.1623)

+0.7071(r+ 0.1623)(0.7071ỹ− 0.7071x̃+ 0.2566)

dỹ

dt
= −0.7071(1.5r+ 0.2434)(p+ r + 1.414ỹ− 0.1623)

−0.7071(1.5p+ 0.2434)(p+ r + 1.414ỹ− 0.1623)

−0.7071(0.7071x̃+ 0.7071ỹ+ 0.2566)(p+ r + 1.414ỹ− 0.1623)

−0.7071(p+ 0.1623)(0.7071x̃+ 0.7071ỹ+ 0.2566)

−0.7071(0.7071ỹ− 0.7071x̃+ 0.2566)(p+ r + 1.414ỹ− 0.1623)

−1.414(0.7071x̃+ 0.7071ỹ+ 0.2566)(0.7071ỹ− 0.7071x̃+ 0.2566)

−0.7071(r+ 0.1623)(0.7071ỹ− 0.7071x̃+ 0.2566)

+1.414(p+ r + 1.414ỹ− 0.1623)2 (5)

Next, we use a quadratic approximation for the center manifold of the above system [2] i.e.
we assume ỹ = h(x̃) = 1

2wx̃
2. We can find w by comparing two expressions obtained for dỹ

dt
; the
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first is obtained by using dỹ
dt

= dỹ
dx̃

dx̃
dt

and then using the first equation in Eq. 5 and the quadratic
approximation for ỹ; the second is obtained by direct substitution of the quadratic approximation
into the second equation in Eq. 5. Doing this yields:

ỹ = h(x̃) = −0.7071x̃2/(4p+ 4r − 2.1620)

Hence we obtain the following one dimensional system restricted to the one-dimensional center
manifold:

∂x̃

∂t
= 0.1814r− 0.1814p− x̃(1.5p+ 1.5r)

+0.7071(1.5p+ 0.2434)(p+ r − 0.1623)

−0.7071(1.5r+ 0.2434)(p+ r − 0.1623)

−x̃2(0.7071(1.5p+ 0.2434)/(4p+ 4r − 2.1623) (6)

−0.7071(1.5r+ 0.2434)/(4p+ 4r − 2.1623)

−0.7071(p+ 0.1623)/(8p+ 8r − 4.3246)

+0.7071(r+ 0.1623)/(8p+ 8r − 4.3246))

+x̃3/(4p+ 4r − 2.1623)

It is easy to check that the origin in this transformed system satisfies the necessary conditions
for a cusp bifurcation. The origin of this transformed system corresponds to the point pA = pB = pc
in our original system Eq. 1. Thus, the system undergoes a cusp bifurcation at pA = pB = pc where
pc =

√
10− 3 ≈ 0.1623.

3 Mapping out the bifurcation curves (first order transition

lines)

In order to map out the first-order transition line (bifurcation curve) we adopt a semi-analytical
approach. We assume pB = cpA with c < 1 to obtain the lower bifurcation curve (symmetry of the
system allows us to obtain the upper bifurcation curve, given the lower one). Using Eqs. 1, the fixed
point condition becomes (for simplicity, we denote pA by p):

f(x, y, p) ≡ −xy + (1 − x− y − (1 + c)p)2 + x(1 − x− y − (1 + c)p)

+
3

2
p(1− x− y − (1 + c)p)− cpx = 0

g(x, y, p) ≡ −xy + (1 − x− y − (1 + c)p)2 + y(1− x− y − (1 + c)p)

+
3

2
cp(1− x− y − (1 + c)p)− py = 0

In addition, for a fold bifurcation, we also require that the stability matrix has an eigenvalue with
zero real part. Since, the valid solutions in our case are always real, this is equivalent to requiring
the determinant of the stability matrix to be zero. Thus the condition |Q| = 0 (with Q given by
Eq. 3) along with Eqs. 7 enable us to determine for a given c, the location (pA, cpA) at which the
bifurcation occurs. By numerically solving these equations for different values of c, 0 < c ≤ 1 at
intervals of 0.1, we obtain the lower bifurcation curve shown in Fig. 2 of the main text.
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4 Optimal fluctuational paths, the eikonal approximation

and switching times between co-existing stable states

The master equation for our system takes the general form:

∂P (X, t)

∂t
=

∑

r

[

W (X− r, r)P (X− r, t)−W (X, r)P (X, t)

]

where X = [NA NB]
T denotes the (macro) state of the system as vector whose elements are the

numbers of uncommitted nodes in state A and B respectively, W (X, r) is the probability of the
transition from X to X + r, and r runs over the allowed set of displacement vectors in the space
of macro-states. For our system, r runs over [1 0]T , [0 1]T , [2 0]T , [0 2]T , [−1 0]T , [0 − 1]T . The
deterministic equations can be derived from this master equation and yield:

dXdet

dt
=

∑

r

rW (Xdet, r)

The Wentzell-Friedlin theory [5, 6] assumes that for any path [X] in configuration space:

P([X]) ∼ exp(−S([X]))

with S([X∗]) = 0 for the deterministic path [X∗]. It follows that the dominant contribution to the
probability of a fluctuation that brings the system to state X starting from a stable state Xm can
be written as:

P(X|Xm, t = 0) = exp(−S(X)) (7)

where
S(X) = min[X]:Xm→XS([x]) (8)

where the minimization is over all paths [X] starting at Xm and ending at X. For X far away
from the steady state, the probability of occupation P (X) is equivalent to logarithmic accuracy
to the probability of the most likely fluctuation, P(X|Xm, t = 0) that brings the system to X.
The assumption of the form given by Eq. 7 for the occupation probability is known as the eikonal
approximation.

Using a smoothness assumption for W (X, r), and since the changes in numbers of A and B nodes
are O(1), we can neglect the difference between W (X−r, r) and W (X, r). With this approximation,
the eikonal form for the occupation probabilities in the master equation yields the following equation
for S(X) [4]:

H

(

x,
∂s

∂x

)

= 0 (9)

where
H(x,p) =

∑

r

w(x, r)(exp(rp) − 1) (10)

and
x = X/N, w(x, r) = W (X, r)/N, s(x) = S(X)/N.

Eq. 9, is analogous to a Hamilton-Jacobi equation for the action of a system with Hamiltonian
given by Eq. 10. The corresponding Hamilton equations of motion for components of position x and
momentum p are:

ẋi =
∂H

∂pi
ṗi = −∂H

xi

(11)
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with s(x) playing the role of the classical action:

s([x]) =

∫

[x]

L(x,p)dx =

∫

[x]

pẋdx

where [x] denotes a particular path obeying the equations of motion (Eqs. 11).
Following this Hamiltonian formulation to characterize the fluctuational paths of the system,

our goal is to find the path with minimum action that reaches the separatrix in phase space of
the deterministic motion, starting from the vicinity of the stable state under consideration [6, 4].
Arguments in [3] show that the fluctuational path reaching the separatrix with the minimal value
of the action, is the path that passes through the saddle point. This is the optimal escape path,
i.e., the path whose probability of occurrence dominates the probability of escape and we denote it
by [xopt]. This path can be found by integrating the equations of motion Eq. 11, and finding the
required path that starts from the vicinity xm to the saddle point xsaddle. Thus following Eqs. 7, 8
we have for the probability of escape from the current stable point in which the system is trapped:

Pescape = P (xsaddle) ∼ exp[−Ns(xsaddle)] (12)

where

s(xsaddle) =

∫

[xopt]

L(x,p)dx

and the transition time (or time to escape from the steady state) follows:

Tswitching ∼ exp[Ns(xsaddle)] (13)

In practice we start from some point x in the vicinity of the stable state, and to obtain the
corresponding momenta p and action s(x), we employ a Gaussian approximation [4]:

S(x) =
∑

Zij(xi − xm
i )(xj − xm

j )

where Z satisfies an algebraic Ricatti equation:

QZ−1 + Z−1QT +K = 0

where Q is the linear stability matrix (Eq. 3) evaluated at xm and Kij =
∑

r
w(xm, r)rirj . Solving

this Ricatti equation yields Z which in turn yields S(x) and p(x).
In order to find the optimal fluctuational path of escape from a given steady state, we numerically

generate fluctuational paths from various points close to the steady state (we explore points at
intervals of 10−5 along the x1 dimension and 10−2 along the x2 dimension around the steady state)
and find one that passes close enough (no greater than a distance of 10−5) to the saddle point. The
equations of motion, Eqs. 11, are integrated using a trapezoidal rule to generate these paths starting
with initial conditions obtained using the Gaussian approximation described above and subsequent
numerical solution of the Ricatti equation (we use a Matlab Ricatti equation solver for the latter).
The scaling behavior of switching times obtained using this approach for various committed fraction
values as a function of distance from second-order transition (or cusp) point are shown in Fig. 5 of
the main text.
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