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Abstract

Background: The RTS,S malaria vaccine may soon be licensed. Models of impact of such vaccines have mainly considered
deployment via the World Health Organization’s Expanded Programme on Immunization (EPI) in areas of stable endemic
transmission of Plasmodium falciparum, and have been calibrated for such settings. Their applicability to low transmission
settings is unclear. Evaluations of the efficiency of different deployment strategies in diverse settings should consider
uncertainties in model structure.

Methods and Findings: An ensemble of 14 individual-based stochastic simulation models of P. falciparum dynamics, with
differing assumptions about immune decay, transmission heterogeneity, and treatment access, was constructed. After
fitting to an extensive library of field data, each model was used to predict the likely health benefits of RTS,S deployment,
via EPI (with or without catch-up vaccinations), supplementary vaccination of school-age children, or mass vaccination every
5 y. Settings with seasonally varying transmission, with overall pre-intervention entomological inoculation rates (EIRs) of
two, 11, and 20 infectious bites per person per annum, were considered. Predicted benefits of EPI vaccination programs
over the simulated 14-y time horizon were dependent on duration of protection. Nevertheless, EPI strategies (with an initial
catch-up phase) averted the most deaths per dose at the higher EIRs, although model uncertainty increased with EIR. At two
infectious bites per person per annum, mass vaccination strategies substantially reduced transmission, leading to much
greater health effects per dose, even at modest coverage.

Conclusions: In higher transmission settings, EPI strategies will be most efficient, but vaccination additional to the EPI in
targeted low transmission settings, even at modest coverage, might be more efficient than national-level vaccination of infants.
The feasibility and economics of mass vaccination, and the circumstances under which vaccination will avert epidemics, remain
unclear. The approach of using an ensemble of models provides more secure conclusions than a single-model approach, and
suggests greater confidence in predictions of health effects for lower transmission settings than for higher ones.
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Introduction

Malaria vaccines have long been awaited by public health

planners [1]. Promising results of recent phase II trials [2,3] and a

current large-scale phase III trial of the RTS,S vaccine increase

the urgency of understanding the potential benefits of a licensed

malaria vaccine [4]. Consequently, there is an urgent need to

understand how a malaria vaccine should best be deployed, and

what resources should be invested in deployment. To contribute to

addressing these questions, we previously developed a stochastic

simulation model of malaria epidemiology and vaccination [5],

and used this to make predictions of the likely impact of potential

malaria vaccines with a wide range of characteristics, using a

limited set of deployment options in African health systems at

various transmission levels [6].

This analysis was limited by depending on the assumptions of

a single (base) model for malaria transmission dynamics,

pathogenesis, and immunity (Table 1). While there is general

consensus on the dynamics of malaria in the mosquito, based on

the Ross-Macdonald model [7,8] and discrete time analogues

[9,10], there is considerable uncertainty about the dynamics of

malaria immunity, and there is no consensus on what constitutes

an adequate mathematical model for immunity. The predictions

of vaccination models might be expected to be highly sensitive

to assumptions about the dynamics of the natural immune
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response to the parasite. Levels of heterogeneity both in the host

response to infection and in transmission are generally

unknown, and this also contributes to uncertainty in model

predictions.

Large reductions in malaria transmission have been observed

across Africa in recent years [11], so settings with very low

transmission are increasingly important. However, predictions of

the public health impact of vaccination for such settings have been

particularly uncertain. Vaccine trials are carried out in areas with

high incidence of malaria, and our previous model was calibrated

mainly with data from areas of stable endemic transmission,

because this calibration requires seasonal patterns of the

entomological inoculation rate (EIR), a quantity rarely available

from low transmission sites [12]. Micro-heterogeneity in transmis-

sion, in the biological response of the host to infection, and in the

health system are well known [13–15] and are likely to be extreme

in cities [16,17] or zones with poorly transmitting vectors [18,19].

At low levels of exposure, natural immunity may decay. It is

unclear whether the structures of existing models, including our

own [5], are adequate for predicting vaccine effects outside the

range of transmission settings used for calibration. The likely

impact of the RTS,S vaccine on disease burden in low and

unstable transmission settings has therefore been highly uncertain.

Model uncertainty exists because we are unsure of the best

model structure. One strategy to address this is to simultaneously

consider many different models (known as ensemble modeling).

Each element in such an ensemble is based on a distinct set of

assumptions, broadly consistent with known biology and field data,

leading to a different simulation of the processes and making it

possible to evaluate the sensitivity of the predictions to these

assumptions. In many disciplines, notably meteorology [20], this is

a well-established approach. In infectious disease modeling, such

uncertainty analysis is used less frequently, though there have been

valuable developments, such as the comprehensive assessment of

data-driven uncertainty in the predictions of the SPECTRUM

HIV model [21], in recent analyses of models of sexually

Table 1. Main assumptions of the base model.

Category Assumption

Main assumptions about malaria epidemiology The parasite densities experienced in cases of induced malaria in neurosyphilis
patients were representative of the natural history of single malaria infections in the
naive host.

All hosts have the same age-dependent risks of infectious bites and co-morbidities,
and the same probabilities of treatment for uncomplicated and severe episodes.

The relationships between asexual parasite densities and infection of mosquitoes
seen in induced malaria can be applied across all settings independently of immune
status of the population.

The definition of clinical episodes used in the studies in Dielmo and Ndiop, Senegal
[58], corresponds to clinically meaningful events.

Decay of immunity in the absence of exposure can be neglected as a factor
determining clinical outcomes in stable endemic settings.

The temporal pattern of exposure makes little difference to the resulting immune
status (e.g., a 5-y-old who has been infected three times has the same immune status
as an adult who has been infected three times).

Approximations made in applying the same model across different
settings

Patterns of occurrence of clinical episodes in stable endemic settings can be used to
make valid inferences about the incidence of clinical disease at intermediate
transmission and lower intensities.

The incidence and age pattern of other diseases that interact with P. falciparum in
determining its severity are similar across different settings where malaria is endemic.

Variations between human populations in both acquisition of immunity and response
to infection are not important in determining the outcome of infection.

Differences in the age structure of different populations are of only secondary
importance in influencing the impact of partially protective vaccines.

Differences in patterns of seasonality of malaria transmission do not have a large
effect on the public health impact of a vaccine.

The seasonal pattern of the vectorial capacity for malaria will remain unchanged for
the time horizon under consideration, i.e., existing levels of vector control will be
maintained but not improved.

Assumptions about case management The model originally intended to represent case management in rural Tanzania [35]
represents an adequate approximation of case management systems in other malaria
endemic settings.

The health system will remain essentially unchanged throughout the follow-up
period in terms of efficacy of treatment as well as costs.

Assumptions about vaccine deployment The same deployment strategy is assumed to be applied across the whole of the
country/region, with uniform levels of access to both vaccination and health care
based on data from rural Tanzania.

Assumptions of the model of vaccine action Efficacy of vaccination is independent of host immune status.

Efficacy of vaccination is unchanged by breakthrough infections.

Efficacy decays over time following an exponential decay.

doi:10.1371/journal.pmed.1001157.t001
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transmitted infections [22], and in comparisons of different

influenza models by the MIDAS network [23]. Formal analysis

of model uncertainty using Bayesian melding has also been used,

most notably in the predictions from the Joint United Nations

Programme on HIV/AIDS Estimation and Projection Package

[24], but analysis of malaria models has generally been based on

point predictions, simple sensitivity analyses of single models, or, at

most, comparisons of small numbers of model formulations [25–

27]. We recently carried out a probabilistic sensitivity analysis to

enable us to make predictions allowing for the uncertainty in the

parameters of our base model [28], but there is a need to compare

outputs from multiple models if more robust inferences are to be

made from such modeling [29].

We now compile an ensemble of stochastic simulation models of

malaria epidemiology, incorporating different assumptions about

decay of immunity and about heterogeneities in exposure and

access to treatment. We use this ensemble to analyze the likely

impact of such vaccines in settings with moderate to very low levels

of transmission intensity. We consider a range of possible

deployment strategies of the vaccine to identify which might be

most efficient.

Methods

Models of Malaria Epidemiology
The base model is a comprehensive, individual-based model of

malaria and vaccination in humans that has been previously

published in a supplement to the American Journal of Tropical

Medicine and Hygiene [5,30–34] Briefly, a simulated population of

humans is updated at each 5-d time step via components

representing new infections, parasite densities, acquired immunity,

uncomplicated and severe malaria episodes (including severe

malarial anemia), direct and indirect mortality, infectiousness to

mosquitoes, case management [35], and vaccination with a pre-

erythrocytic vaccine [36]. The simulated malaria infections each

have distinct parasite densities that vary by time step, while the

level of malaria transmission is assumed to vary seasonally.

The models are constructed in a modular way, with distinct

components that represent infection of humans, blood-stage

parasite densities, infectiousness of humans to mosquitoes,

incidence of morbidity, and mortality. Each of the components

aims to capture the relevant biology, while at the same time fitting

available data. Simulated immunity acts mainly by controlling

parasite densities [30]. In turn, the simulated incidence of clinical

malaria is a function of parasite density [32], as are the incidences

of severe disease and malaria-related mortality [31]. Natural

immunity to infection without vaccination is acquired only after

considerable exposure to Plasmodium falciparum malaria parasites

[33].

The ensemble was constructed by varying different modular

components of the base model. A total of 30 models, each

constructed by substituting different versions of one or more

components, were investigated. Sixteen of these models were

excluded from the ensemble, either because they were very similar

to other models in the ensemble, or because the model-fitting

algorithm did not find any sets of parameter values that provided

an adequate fit to the data (see ‘‘Model Fitting’’ below). Fourteen

models were retained. The modifications of the base model that

resulted in inclusion of these 14 models are summarized in Table 2

and described in detail in Text S1. Each of these models was

assigned the identifier used for the fitting process. Each specific

parameterization evaluated in the fitting process (several thou-

sands for each model; see Text S1) was also assigned a unique

identifier. The models were programmed in C++ as part of the

open source software platform OpenMalaria (http://code.google.

com/p/openmalaria/).

Model Fitting
The parameters listed in Table 1 were estimated by fitting to the

same set of 61 datasets originally used for fitting the base model.

These datasets cover a total of ten different epidemiological

quantities (objectives) (see Text S1, and Table 1 in [37]). A genetic

algorithm was used to maximize a goodness of fit statistic

computed as the weighted sum of the log-likelihood contributions

for each objective [37] (see Text S1). To obtain the substantial

computing resources required, we used computers made available

over the internet by volunteers, via the BOINC (Berkeley Open

Infrastructure for Network Computing) volunteer computing

software (www.malariacontrol.net).

Characteristics of the Simulated Settings
The settings for the simulated vaccination programs were

assumed to have the seasonal pattern of Namawala, Tanzania [38]

scaled to give an overall pre-intervention EIR of 20, 11, or two

infectious bites per person per annum (ibpa). The highest EIR of

20 ibpa is similar to standard scenarios that we previously

simulated [6,38], while the EIR of 2 ibpa corresponds to a low

transmission setting in which interruption of transmission might be

a realistic objective. An EIR of 11 ibpa is close to the transmission

intensity at which the base model predicts optimal cost-

effectiveness for vaccination of infants via the World Health

Organization’s Expanded Programme on Immunization (EPI)

[28].

The simulated human populations comprised 100,000 people

with an age distribution that was approximately stable over time

based on data from Ifakara, Tanzania, and with a health system

using artemisinin combination therapy with low rates of access [6].

Each simulation begins by exposing the simulated population to

the same annually recurring pattern of inoculations for a period of

at least 90 y before the intervention program to ensure that the

vaccination program starts with infection status and immune status

at steady state values over the whole age range.

Simulation of Vaccine Effects
Pre-erythrocytic vaccination was simulated as described previ-

ously [6,38], assuming that vaccination leads to a reduction in the

proportion of inoculations from the bites of infected mosquitoes

that result in blood-stage infection, and that the underlying

vaccine efficacy is equal to the proportion by which this force of

infection is reduced. This value is higher than the efficacy in

preventing clinical malaria [36].

Based on analyses of the initial phase II trials of RTS,S [36],

which used the AS02 adjuvant, we estimated that this underlying

efficacy should take a value of 52% [36]. More recent trials of

RTS,S/AS01 have demonstrated somewhat higher efficacy, so for

the simulations presented here, we assumed an overall average

underlying efficacy of 60% immediately after the third dose.

The rate of decay over time in the immunity induced by the

vaccine, and hence in its underlying efficacy, is an important

driver of the overall uncertainty in projections of long-term

effectiveness of RTS,S [28], largely because of difficulties in

measuring it. Extended follow-up of field trials of malaria vaccines

provide direct evidence on decay of efficacy over time, but

variations in efficacy observed in the field relate only indirectly to

the underlying biological effect of the vaccine because of

heterogeneity in the host population. In particular, transmission

heterogeneity and acquired immunity bias downwards the

estimates of efficacy [36,39]. These heterogeneities also result in

Ensemble Modeling of Malaria Vaccination
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substantial biases in estimates of rates of decay of clinical

protection when only the first clinical episode is analyzed for

each trial participant, as in the main analyses of RTS,S trials

[40,41]. However, even when appropriate statistical methods are

used to analyze all malaria episodes occurring in the trial cohort,

measured clinical efficacy is likely to decay because the age profile

of morbidity and mortality in vaccine recipients shifts towards the

pattern found in lower transmission settings. This shift of

morbidity to older ages [42,43] will appear as a decay in efficacy

over time in a controlled trial, thus complicating inference of the

decay rate of the underlying vaccine effect from trial data.

An alternative approach to estimate decay in underlying efficacy

is to measure immune effectors. This has the advantage that data

can be obtained even from individuals who do not get sick, but there

is uncertainty in whether the relevant immune response has been

assessed, and how it maps onto protection [44]. The relationship

between RTS,S-induced protection and anti-circumsporozoite

antibody levels is not consistent over time or across trials [40,45].

In the longest reported follow-up of an RTS,S trial to date [41], the

effects on prevalence and antibody levels were sustained over 4 y

[45], while clinical efficacy appeared to decline [41].

Overall, therefore, these field studies provide little data from

which to estimate the underlying rates of decay of protection, with

the best evidence being the sustained effect on prevalence reported

in Mozambique [41]. In order to better understand how to

translate trial results into projections of effectiveness, we simulated

a range of field trials with different decays of underlying efficacy,

and considered how this would translate into trial results and

effectiveness.

For each of the models, we simulated field trials with an

underlying efficacy (immediately on completion of the vaccination

schedule) of 60%. This quantity is equivalent to the assumed efficacy

in preventing infection in challenge trials in naive volunteers. The

simulated trials all used the initial 20-ibpa transmission setting and

the EPI schedule, conducted in total populations of 20,000 people,

with 50% of newborn children (assigned randomly) receiving the full

course of vaccine. Three sets of trials were simulated, with different

exponential decays over time in the underlying efficacy (5-y half-life,

10-y half-life, and negligible decay).

The effect of incomplete courses of vaccination is also highly

uncertain. For the main analyses we assigned an average initial

underlying efficacy of 40% after a single dose, and 50% after two

doses. Booster (fourth or subsequent doses) of vaccine return the

simulated efficacy to the value achieved immediately after the third

dose. To explore the sensitivity of the results to this assumption we

carried out an additional series of simulations in which incomplete

courses of vaccination were assumed to have zero efficacy.

Vaccine Deployment Modalities
Six modalities for deployment of vaccines in programs were

simulated.

Expanded Program on Immunization. Delivery of the

vaccines through the EPI with vaccinations is at ages 1, 2, and

3 mo. We assume coverage of full vaccination (three doses)

corresponds to that reported in Tanzania for three doses of

diphtheria–tetanus–acellular pertussis–hepatitis B virus vaccine in

the year 2003, which stood at 89%. The assumed dropout rate

from the first to the third dose is 6%, since coverage for the first

dose of diphtheria–tetanus–acellular pertussis–hepatitis B virus

vaccine was 95%.

Expanded Program on Immunization with catch-

up. Vaccination is at ages 1, 2, and 3 mo, but in addition, the

program includes catch-up vaccination of children under 18 mo of

age, with each dose reaching 80% of eligible children.

Expanded Program on Immunization with vaccination of

school children. Vaccination is at ages 1, 2, and 3 mo, but with

additional vaccination of primary school children (aged 6 to 11 y).

The program starts with each dose reaching 80% of school-age

children (simulating vaccination of entire schools). Subsequent

annual intakes of new enrollments are vaccinated. Once children

who have received EPI vaccination start to enter school, the

annual school vaccination rounds deliver only a single (booster)

dose of vaccine.

Expanded Program on Immunization with vaccination of

school children at low coverage. This modality is the same as

the previous one, but with only 50% of children reached at each

vaccination round.

Mass vaccination. A mass vaccination campaign is carried

out at the beginning of the intervention period, comprising three

monthly rounds to deliver a full course of vaccination, and

additional campaigns every 5 y subsequently. The simulated

coverage level was 80% at each round of vaccination in each age

group.

Mass vaccination with low coverage. This modality is the

same the previous one, but with only 50% of the population

reached at each vaccination round.

EPI and school vaccination result in vaccination at almost

constant rates, with established programs aiming to administer

three and four doses for each child, respectively (Figure 1). Mass

vaccination strategies deliver vaccines intermittently, leading to a

stepwise increase in the cumulative numbers of doses delivered

(Figure 1).

Predictions and Analysis
The results were plotted for time horizons up to 14 y. For each

simulation, the prevalence of patent infection in the population

(assuming diagnosis by standard microscopy procedures), inci-

dence of clinical malaria, severe malaria, and overall malaria-

related mortality (summing direct and indirect deaths) were

Figure 1. Numbers of doses of vaccine delivered by various
deployment strategies over time.
doi:10.1371/journal.pmed.1001157.g001
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monitored. The corresponding effectiveness values, defined as the

proportion of events averted, were also computed. To provide

information on stochastic variation as well as variation between

models in the ensemble, each scenario was simulated five times for

each of the 14 models, with different streams of random numbers

for each of the five simulations.

Graphical output was generated using the SAS GPLOT

procedure (SAS Institute, version 9.2 for Windows).

Results

Model Fitting and Parameter Estimates
The 14 models (Table 2) that satisfied the criteria for inclusion

adequately reproduced the age-specific patterns of infection and

morbidity to which they were fitted (detailed plots of fit available

from the authors).

Some of the estimated parameter values varied considerably

between the 14 members of the ensemble (Table 3). In particular,

several fits gave much higher estimates of the critical value of the

number of entomological inoculations in the model of pre-

erythrocytic immunity, X �p , than in the base model. High values of

this parameter correspond to a minimal role of the pre-

erythrocytic component in naturally acquired immunity. The re-

estimated parameters relating to severe morbidity and mortality

retained values very similar to those in the base model, with the

exception that values of Y �B1 were all lower, corresponding to a

lower parasitemia threshold for severe malaria. These lower values

seem more reasonable than those in the base model when

compared with actual measured parasite densities in severe

malaria cases.

Simulations of Field Trials
In the analyses of the simulated field trials, clinical efficacy was

computed as the proportion of all clinical episodes averted for each

3-mo period of follow-up. Analyses of clinical efficacy for 4.5 y of

follow-up for each child (Figure 2) indicated that in all models the

clinical efficacy in the simulated trials was considerably less than

the underlying efficacy. These modeled efficacies were higher than

those observed in the original field trial of RTS,S/AS02 in

children [46], but lower than that reported in the most recent trials

of RTS,S/AS01 [47]. In these simulations the largest differences

between the underlying efficacy and the efficacy in the trial

simulation were with models R0063, R0065, and R0068, which

assumed higher levels of transmission heterogeneity than did the

other elements of the ensemble.

In each simulation, the clinical efficacy showed an initial

increase during the latter part of the first year of life, and then a

decline (Figure 2). This pattern mirrors the age pattern in

simulated blood-stage immunity [30], which includes a component

of maternal immunity that declines with age, and acquired

components that cumulate in response to exposure. In the

simulated trials, the declines in clinical efficacy with age after

the first birthday were much steeper than the declines in the

underlying efficacy, implying that field estimates of decay of

immunity would considerably overestimate the rate at which

efficacy was being lost.

Field efficacy decays more rapidly than the underlying vaccine

effect because vaccinees experience an age pattern of clinical

disease equivalent to that of a population with reduced exposure.

This corresponds to an age shift in the peak of mortality, which

can be seen in the field data used to parameterize the models [48].

The shift of disease to older age groups is manifested in the

simulated trials (and presumably in actual field trials) as decay with

age (and hence time) in the measured efficacy. This decay is

evident even in the absence of a decay in the underlying efficacy

(Figure 2C), though the presence of decay in the underlying

efficacy considerably increases the decay rate that would be

observed.

We would expect the same biases in estimation of decay rates to

occur in actual field trials that continue long enough and have

sufficient power.

Simulated Levels of Transmission
Figures 3A and 3B show the assumed seasonally recurring

patterns of transmission used as input for the simulations for 2 and

20 ibpa, respectively. The 11-ibpa simulated pattern is given in

Figure S1.

The effects of a vaccination program on transmission are

illustrated by trends in the simulated EIR after the start of the

simulations (Figures 3C–3F and S1). Delivery of vaccine via EPI or

by vaccination in schools had minimal effect on these trends, and

is therefore illustrated only in Text S1.

With an initial EIR of 2 ibpa, mass vaccination with high

coverage reduced transmission by an order of magnitude, but in

most simulations, a new steady state was reached (Figure 3C) after

the second round of vaccination (at year 6; see Figure 1). Mass

vaccination at low coverage (Figure 3E) had similar effects.

Despite the low levels of simulated EIR achieved in these

scenarios, interruption of transmission (assessed as the absence of

patent infection from the human population) did not occur in any

of the simulations. Mass vaccination with low coverage resulted in

only a modest reduction in EIR, and the maximal effect was

achieved about 9 y into the simulation (Figure 3E).

With an initial EIR of 20 ibpa, even mass vaccination had little

effect on the EIR, with very close agreement among the 70

simulations, (corresponding to five different seed values for each of

the 14 models) (Figure 3D and 3E). With other vaccination

deployment modalities, effects on EIR were almost imperceptible

(Figure S1). Results of the 11-ibpa scenarios were very similar to

those of the 20-ibpa scenarios.

Simulated Prevalence
In the absence of interventions, the simulated prevalence of

malaria at 2 ibpa was both much lower and had the peak shifted to

older ages compared to at 11 or 20 ibpa (Figure 4). There was less

variation between simulations at 2 ibpa (Figure 4A) than at 20 ibpa

(Figure 4B). The patterns for 11 ibpa were intermediate (Figure

S2).

EPI vaccination had little effect on overall prevalence, but some

reduction in the youngest age groups is evident at both

transmission intensities (Figure 4C and 4D). Mass vaccination

almost completely eliminated prevalent infections at 2 ibpa

(Figure 4E), but, as found in the previous analyses [6,28], had

rather little effect on prevalence at the higher transmission

intensity (Figure 4F). The effects for an initial EIR of 11 ibpa

were similar to those for 20 ibpa (Figure S2). Catch-up or school

vaccination had little effect on prevalence additional to that of EPI

vaccine delivery.

Simulated Incidence of Uncomplicated Malaria Episodes
In the absence of a vaccination program, the overall incidence

rates are similar for the different transmission intensities but with a

substantial shift to older age groups in lower transmission settings

(Figures 5 and S3), as is observed in the field [48]. There was less

variation among simulations in the incidence at low transmission

(Figures 5 and S3). This variation was mostly between the different

models (Table 2), with the variation between seeds (the standard

deviation columns in Table 2) very low compared to the mean

Ensemble Modeling of Malaria Vaccination
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incidence rates. The highest incidence of clinical episodes was

associated with the models R0674 and R0678, in which additional

heterogeneities were simulated.

Irrespective of the transmission setting, EPI vaccination averted

only a modest number of malaria episodes, with most predictions

of the number of episodes averted falling within a rather narrow

envelope (Figure 6A and 6B). Similar patterns were observed for

all three transmission intensities and for EPI with catch-up, or for

school vaccination (Figure S4). The rather narrow envelopes

enclosing the predictions indicate that the vaccination effects are

not very sensitive to the various assumptions about immunity or

heterogeneity.

Mass vaccination at an initial EIR of 2 ibpa was predicted to

avert substantial morbidity, even at the lower coverage level. The

trajectory of cumulative numbers of episodes averted over time

was close to a straight line, with some influence of seasonality

(Figure 5E), implying that the year-to-year benefits remain more

or less constant. Variation between models and seeds was low

(indicated by the closeness of the maxima and minima) but showed

some tendency to increase over time.

In simulations of mass vaccination at initial EIRs of 11 ibpa (not

shown) or 20 ibpa, substantial numbers of clinical episodes were

averted in the first few years of the simulation (Figure 6F), but the

curves of numbers of events averted tended to flatten out, so that

the proportion of episodes averted decreased as the time horizon

grew longer. Simulations of school vaccination strategies

(Figure 6C and 6D) generated results that were intermediate

between those for EPI and mass vaccination strategies.

Although the different models and parameterizations all

predicted these patterns, the envelopes of the results for mass

vaccination at initial EIRs of 11 and 20 ibpa were much wider

than those for the lower transmission setting, indicating more

model uncertainty, especially in the prediction of the number of

clinical episodes averted (Figure S4). This proportion varied

considerably between models (Table 2), with the percentage

averted, cumulated over the first 10 y of the simulated program,

varying from only 6%–7% for the models with between host

variation in susceptibility to infection, to 20% in models with

heterogeneity in access to treatment. The stochastic variation

within models, measured by the standard deviation of these

percentages, was small.

Simulated Incidence of Severe Disease and Mortality
In the absence of a vaccination program, there is a strong

decrease with age in simulated incidence of severe events at 20

ibpa, but rather little age dependence at 2 ibpa, with results for 11

ibpa being more similar to those of the higher transmission

intensity than to those of the lower one (Figures S5, S6, and 7).

The simulations agree that at 2 ibpa, somewhat more of the severe

disease and mortality is in adolescents and young adults. Existing

field data provide only a weak evidence base on age dependence of

severe outcomes in low transmission settings [31]. Most research

has emphasized morbidity in younger age groups, but where

malaria exposure occurs only infrequently, it is likely to result in

severe disease among older hosts. An exposure of 2 ibpa is

intermediate between the EIRs to which the models were fitted

and is a setting with only sporadic exposure and negligible

acquired immunity, where all age groups are vulnerable to disease

with a high case-fatality rate if not treated. Stochastic variation is a

substantial contributor to variations between simulations in

mortality rates because of the smaller numbers of deaths in low

transmission settings (Table 2).

At all three transmission intensities, simulated vaccination

through EPI had only modest effects on the patterns of severe

disease or mortality (Figures S7 and S8). In contrast, there were

substantial effects of mass vaccination at 2 ibpa on the number of

severe episodes averted (Figure S7) and deaths averted (Figures S8

and 7). These effects are similar to those on overall clinical

incidence (Figure 6), in that the cumulated number of episodes

averted continued to increase more or less linearly with time, even

with some upward curvature, corresponding to the decrease in

transmission. The proportions of clinical episodes, severe episodes,

Figure 2. Efficacy in averting clinical episodes in simulated
clinical trials. The three panels correspond to different decay rates of
vaccine efficacy: (A) 5-y half-life, (B) 10-y half-life, and (C) no decay. The
dashed lines give the underlying efficacy. Each continuous line
corresponds to a different model within the ensemble, and displays
spline-smoothed estimates of efficacy in averting clinical disease. The
grey area is an envelope enclosing all the simulation results. All
simulations refer to the 20-ibpa transmission setting and the EPI
schedule described in the Methods.
doi:10.1371/journal.pmed.1001157.g002
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and deaths averted all increased with the duration of the time

horizon, each quantity reaching values of about 80% after 14 y.

However, the envelopes enclosing all the predictions (Figures 6

and 7) widened with the duration of the follow-up, indicating that

uncertainty increases considerably with the length of the time

horizon.

At 20 ibpa, mass vaccination showed similar temporal patterns

in its effects on averting severe disease (Figure S7) and death

(Figures 7 and S8), as for uncomplicated malaria, but with an even

more pronounced tendency for the health benefits to decline with

longer time horizons, so that the plots of cumulative proportions of

episodes averted show decreases with time. In contrast to the

pattern for uncomplicated episodes, the variation between models

was less at 20 ibpa than at 2 ibpa.

Since EPI deploys the fewest doses of vaccine, it is not surprising

that it delivers the lowest impact, and the number of severe events

or deaths averted per dose of vaccine represents a simple measure

of the overall efficiency of a program that adjusts for this. Given

the rather limited variation between models in predicted impact,

the main patterns are captured by a simple average of this ratio

across simulations. Figure 8 compares the numbers of deaths

averted per 1,000 vaccine doses by each of the different strategies.

At 20 ibpa, EPI performs better on this metric than any of the

other strategies, with catch-up providing an initial benefit for the

first 6 y of the program. At 11 ibpa, the ranking of strategies is the

same, but at 2 ibpa, the greatest benefit per vaccine dose is

obtained with a mass vaccination strategy. The same data are also

considered from the perspective of comparing the benefit per dose

of a given strategy across transmission intensities (Figure 8). EPI

provides more benefit (considered over the whole simulation

period) at 11 ibpa than at either of the other EIRs (corresponding

to previous findings [28]). EPI benefit cumulates only very slowly

at 2 ibpa. School vaccination delivers more benefit per dose at 2

ibpa than it does at either other EIR, whereas mass vaccination

provides the highest benefit per dose at 2 ibpa, but performs

poorly at higher transmission levels.

Effects of Decay of Protection over Time
The effectiveness of a vaccination program in averting

morbidity and mortality is quantified by the overall population

proportion of episodes that are averted. The effectiveness

calculation includes episodes in individuals who are not vaccinated

or are not eligible for vaccination, includes new recruits into the

population, and may consider longer time horizons, within which

there may be gradual effects of reduced exposure on acquisition of

immunity. All these effects modify the relationship between

effectiveness and decay in efficacy, defined either as underlying

efficacy or as measured in a field trial.

Previous analyses of the base model considered the effects of

decay of immunity on effectiveness of both EPI vaccination [5,6]

and mass vaccination [6]. These analyses indicated that effective-

ness is not very strongly influenced by the half-life of efficacy,

Figure 3. Simulated Entomological Inoculation Rates over time. (A) EIR = 2 ibpa, no intervention. (B) EIR = 20 ibpa, no intervention. (C) EIR = 2
ibpa, mass vaccination, high coverage. (D) EIR = 20 ibpa, mass vaccination, high coverage. (E) EIR = 2 ibpa, mass vaccination, low coverage. (F) EIR = 20
ibpa, mass vaccination, low coverage. The blue lines correspond to the median across all simulations of the EIR; the grey area in (C) and (E) is the
envelope delimited by the 2.5 and 97.5 percentiles of the complete set of simulations.
doi:10.1371/journal.pmed.1001157.g003
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providing this half-life is of the order of 5–10 y or more.

Additional simulations using all the models in the ensemble

considered half-lives of 1, 2, or 5 y in the underlying efficacy

(Figure 9). Each scenario was simulated with three distinct random

number seeds for each of the 14 models, and for a simulated

population of 100,000 individuals, exposed initially to an EIR of

20 ibpa. Effectiveness was computed for the first 10 y after

introduction of the intervention.

To facilitate recalculation of likely effects of vaccination

programs with different assumed half-lives of vaccine efficacy,

the results are presented in terms of the effectiveness of the

program relative to that of the vaccine with the standard half-life

of 10 y assumed in the main simulations. These simulations

confirmed the insensitivity of effectiveness to half-life at half-lives

of 5–10 y for all 14 models (Figure 9). There was very little

difference between the models in the extent of reduction in

effectiveness against uncomplicated episodes at a given half-life.

This applied irrespective of the deployment strategy of the vaccine

(compare rows in Figure 9; catch-up and low coverage school

strategies are not shown as these show patterns very similar to

those of EPI and high coverage school strategies). An exception

was mass vaccination at low coverage, where one simulation with a

10-y half-life vaccine predicted a very high effectiveness, leading to

an anomalously low effectiveness in the shorter half-life scenarios

with which it was compared.

In comparison to effects for uncomplicated disease, there was

more variation between simulations in the extent of reduction in

effectiveness against severe disease and mortality. Nevertheless, the

overall shapes of the curves for these outcomes in Figure 9 are

generally similar to those for uncomplicated disease. Most of the

variation between simulations is attributable to stochastic varia-

tion, rather than variation between models.

Sensitivity of Effectiveness Estimates to Efficacy of
Incomplete Courses of Vaccination

Additional simulations were carried out to examine the effect of

the assumed efficacy of incomplete courses of vaccination (see

Methods). These simulations considered the effect of assuming that

an incomplete course of either one or two doses of vaccine has zero

efficacy. The full course of three doses was assumed, as in the main

analyses, to have a 60% underlying efficacy decaying with a 10-y

half-life. The results of these simulations are expressed as

effectiveness relative to that of the standard scenarios described

above, in which the efficacy of one dose was set at 40%, and of two

doses at 50% (Table 4). All these simulations assumed a pre-

intervention EIR of 20 ibpa.

In the case of EPI-based interventions, where assumed coverage

for each dose is high, the effect of reducing the efficacy of

incomplete courses is small, because most recipients are fully

vaccinated. However, with school vaccination and mass vaccina-

Figure 4. Age prevalence curves during the tenth year of follow-up. (A) EIR = 2 ibpa, no intervention. (B) EIR = 20 ibpa, no intervention. (C)
EIR = 2 ibpa, EPI vaccination. (D) EIR = 20 ibpa, EPI vaccination. (E) EIR = 2 ibpa, mass vaccination, high coverage. (F) EIR = 20 ibpa, mass vaccination,
high coverage. The lines correspond to the median values of the five simulations for each model within the ensemble of the prevalence, computed
from values averaged within each simulation over the full year; the grey areas are the envelopes delimited by the 2.5 and 97.5 percentiles of the
simulations.
doi:10.1371/journal.pmed.1001157.g004
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tion, the simulations lead to substantial numbers of incompletely

vaccinated recipients, leading to a substantial reduction in

effectiveness if partially vaccinated individuals have no protection.

In all these simulations, as in those reported above, the

recipients of each dose are independently sampled from the

population. This leads to a very low proportion of individuals

receiving the complete course and may be unduly pessimistic. In

practice it is likely that the same individuals will tend to comply

with the administration of each dose of vaccine, so that wastage

due to incomplete courses will be much less than in these

simulations. A full analysis considering intermediate levels of

efficacy for the first and second doses of vaccine would also need to

consider different levels of correlation in receipt of multiple doses.

Discussion

We originally anticipated that in low transmission settings the

low disease burden might limit the impact of RTS,S vaccination,

but conversely we might have expected that at low transmission, a

herd immunity effect would add to the benefits. Given the

consequent uncertainty about the balance of these effects, we were

reluctant to rely on predictions from a single model because it was

unclear how much the outcomes depend on model structure. The

present analysis shows that an assemblage of multiple models,

encompassing a wide range of assumptions about decay of

immunity and heterogeneity, provide similar predictions. These

simulations all indicate that high coverage vaccination strategies

will be relatively effective at very low transmission levels, while EPI

vaccination will give similar benefits across a wide range of

settings.

The computationally intensive approach we adopted is more

robust than using a single model. For instance, the greater health

impact of vaccination at lower transmission intensities arises

because averting an infection leads to a penalty in terms of

acquisition of immunity. Averting an inoculation at high exposure

may therefore simply delay the clinical response a short time until

the next inoculation arrives. However, one common assumption is

that vaccination should avert more morbidity and mortality at

high transmission, because there is more to avert. Without a set of

models we would have been quite unable to decide between these

two arguments, and without a range of model structures we would

not have known whether the clear dependence of predicted health

outcomes on transmission intensity was a specific quirk of one

particular model.

Contrary to our prior expectation, the envelopes enclosing the

predicted transmission and overall morbidity impacts for the very

low transmission setting were narrower, implying less model

uncertainty. After completion of our analyses, it seems likely that

Figure 5. Age incidence curves during the tenth year of follow-up. (A) EIR = 2 ibpa, no intervention. (B) EIR = 20 ibpa, no intervention. (C)
EIR = 2 ibpa, EPI vaccination. (D) EIR = 20 ibpa, EPI vaccination. (E) EIR = 2 ibpa, mass vaccination, high coverage. (F) EIR = 20 ibpa, mass vaccination,
high coverage. The lines correspond to the median values of the five simulations for each model within the ensemble of the incidence of clinical
malaria, computed from values averaged within each simulation over the full year; the grey areas are the envelopes delimited by the 2.5 and 97.5
percentiles of the simulations.
doi:10.1371/journal.pmed.1001157.g005

Ensemble Modeling of Malaria Vaccination

PLoS Medicine | www.plosmedicine.org 12 January 2012 | Volume 9 | Issue 1 | e1001157



this is because natural immunity, and hence the details of how it is

modeled, is less important at low EIR. Evidently, assumptions

about between host heterogeneity also have little effect on the

simulated health impact of vaccination programs. We can now

make relatively robust statements about the merits of a range of

different deployment strategies in very low transmission settings,

though there are many variants still to analyze (such as initial mass

vaccination with keep-up via EPI and/or school-based vaccina-

tion).

The results support previous research [6,38,49] that suggests

that RTS,S will have less impact in high transmission settings than

in lower ones, largely because in the former, morbidity will not be

averted, but rather will be delayed. This might be interpreted in

the field as decaying efficacy or as ‘‘rebound’’ effects. These

findings correspond to those of studies using the base model only

[28], which found that EPI vaccination would have the greatest

effectiveness around an EIR of 11 ibpa. This impact of EPI is

small, however, compared to the simulated impacts of community-

wide administration of RTS,S at 2 ibpa. At high EIR, malaria is a

disease of very young children, and EPI is likely to be the most

cost-effective deployment strategy, but at low exposure levels, all

ages of hosts are affected, so an EPI program may miss much of

the disease burden [50].

Mass vaccination, on the other hand, will avert disease in all age

groups, and this is partly why the simulations indicate a

substantially greater impact at 2 ibpa than at the higher exposure

level. Large populations now live in areas with very low

transmission, in particular cities [51] and highland fringe areas.

Targeting mass vaccination to such specific settings could deliver

much greater health benefits than introducing RTS,S into the

nation-wide EPI. These benefits are observed even if coverage is

modest, so that, over the long term, the number of doses

administered is no greater than in a school vaccination program,

though these effects will depend on the (unknown) efficacy of

incomplete courses of vaccination, and on the extent to which it is

the same people who receive all doses. Mass vaccination achieves a

herd immunity effect by vaccinating a large proportion of the

population early on, while EPI or school-based strategies do not

Figure 6. Numbers of clinical episodes averted. (A) EIR = 2 ibpa, EPI vaccination. (B) EIR = 20 ibpa, EPI vaccination. (C) EIR = 2 ibpa, EPI and school
vaccination, high coverage. (D) EIR = 20 ibpa, EPI and school vaccination, high coverage. (E) EIR = 2 ibpa, mass vaccination, high coverage. (F) EIR = 20
ibpa, mass vaccination, high coverage. The lines correspond to the median values of the five simulations for each model within the ensemble of the
episodes averted per capita, computed from values averaged within each simulation over the full year; the grey areas are the envelopes delimited by
the 2.5 and 97.5 percentiles of the simulations.
doi:10.1371/journal.pmed.1001157.g006
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achieve this. This benefit of front-loading a vaccination program

contrasts with other malaria control strategies, such as indoor

residual spraying, that must be sustained continuously at high

coverage if transmission is to be prevented from rapidly reverting

towards pre-intervention levels.

Programs may well be reluctant to consider mass delivery of

multiple-dose vaccines, because of the logistic complexity it would

entail, and the danger, inherent in any intermittently intense

activity, of disrupting routine health services. Before such an

approach can be adopted, many questions need to be addressed.

In particular, if more people are eligible for vaccination, the

efficacy of incomplete vaccination courses will probably be more

important. Uncertainty about the persistence of protection is also a

critical problem for strategies depending on herd immunity and on

booster vaccination, while duration of protection is less critical

with EPI strategies, providing it is long enough to carry children

through the first few years of life, when the case fatality rate is

highest. The list of questions becomes even longer when the

feasibility, economics, and equity of varying vaccination strategies

at the sub-national level are considered.

In the real world, when average EIR values become very low,

transmission becomes unstable and epidemic. None of our

simulations reproduce epidemic malaria, which would have given

rise to added variability between simulations in Figure 3. This

suggests that vaccines will reduce transmission in a stable way,

rather than adding to the instability. Suppression of epidemics in

previously unstable transmission settings may therefore be a bonus

of pre-erythrocytic vaccination. These considerations also speak

for the applicability of RTS,S vaccination in low transmission

settings outside the African continent—in particular in South

America and Southeast Asia, where low levels of transmission are

the norm [52]—where RTS,S vaccination may be a useful adjunct

to effective surveillance.

The insensitivity of the results to different model assumptions

about transmission heterogeneity suggests that this is not an

important factor influencing vaccine impact; however, transmis-

sion heterogeneity does affect efficacy estimates in trials (Figure 2),

and so cannot be ignored in inferring the underlying efficacy. The

main analyses in this paper assume acceptable duration of

protection (the consequences of shorter efficacy have already been

Figure 7. Numbers of malaria-related deaths averted. (A) EIR = 2 ibpa, EPI vaccination. (B) EIR = 20 ibpa, EPI vaccination. (C) EIR = 2 ibpa, EPI and
school vaccination, high coverage. (D) EIR = 20 ibpa, EPI and school vaccination, high coverage. (E) EIR = 2 ibpa, mass vaccination, high coverage. (F)
EIR = 20 ibpa, mass vaccination, high coverage. The lines correspond to the median values of the five simulations for each model within the ensemble
of the deaths averted per 1,000 population, computed from values averaged within each simulation over the full year; the grey areas are the
envelopes delimited by the 2.5 and 97.5 percentiles of the simulations.
doi:10.1371/journal.pmed.1001157.g007
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explored extensively [6]). All the models in the current ensemble

also assume perfect mixing in the mosquito population, and there

is a need for further model formulations to evaluate the

implications of this assumption. Perfect mixing of mosquitoes

may well be close to the reality of some transmission settings, since

focal vector control interventions, such as insecticide-treated nets

used against the Anopheles gambiae complex [53–56], can have

effects over large areas, suggesting considerable vector mobility.

Mosquito mobility may be much lower in urban settings [16], in

highland fringe areas, and with weaker vectors. Highly focal

transmission would be expected to be associated with lower

average disease incidence because many hosts would never be

exposed [15]. Some of the other standard assumptions about

vectors are debatable (such as the insensitivity of mosquito feeding

behavior to infection status [57]) and could also be varied, to

support analyses of vector control interventions and of integrated

control programs, though these would not affect predictions of the

impact of vaccination. The ensemble could also be strengthened

by including alternative sub-models for pathogenesis, and

exploring a wider range of models of immunity.

The present paper thus reports on only the first steps of

assembling and analyzing an ensemble for predicting general

effects of possible malaria intervention strategies and for

highlighting data needs and uncertainties. Model ensembles are

often used to improve the precision of model predictions, but so far

we did not analyze the predictive power of the different models, or

how best to combine their outputs statistically to obtain unbiased

point and interval estimates for the predictions. These challenges

will require further analysis, which must take into consideration

the relatedness of the models. All this needs to be complemented

Figure 8. Numbers of malaria-related deaths averted in relation to number of vaccine doses administered. The values plotted are the
medians of all simulations. In the left-hand panels, the different lines correspond to different deployment strategies; in the right-hand panels, the
different lines correspond to different initial transmission intensities.
doi:10.1371/journal.pmed.1001157.g008
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with economic analyses to provide a rational basis for decision

making for national integrated control and elimination programs.

Conclusions
The ensemble modeling approach provides more robust

outcomes than single models, and our analyses suggest that such

an approach produces greater confidence in predictions of

health effects for lower malaria transmission settings than for

higher ones. This study suggests that targeted mass vaccination

with RTS,S in low transmission settings may be more efficient

than national-level introduction via EPI programs, but there

remains a need to analyze the feasibility and economics of such

strategies and the circumstances in which vaccination will avert

epidemics.

Figure 9. Effect of half-life of underlying efficacy on effectiveness of vaccination. The three columns correspond to distinct outcomes
(uncomplicated episodes, severe malaria, and malaria-related mortality [including both direct and indirect]). The rows correspond to different
deployment strategies. The horizontal axis in each graph corresponds to the half-life of the underlying effect of the vaccine. The black lines give the
median relative effectiveness during the first 10 y of the program for each model, where relative effectiveness is defined as the proportion of events
averted divided by the proportion of events averted by a vaccine with a 10-y half-life. The grey areas correspond to the range of this relative
effectiveness for all simulations (three simulations for each model and each half-life). All simulations refer to the 20-ibpa (initial) transmission setting.
doi:10.1371/journal.pmed.1001157.g009
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Supporting Information

Figure S1 Simulated entomological inoculation rates
over time. The columns correspond to the initial EIR values,

and the rows to the vaccination strategies simulated. The thick

lines correspond to the median across all simulations of the EIR;

the grey area is the envelope delimited by the 2.5 and 97.5

percentiles of the complete set of simulations.

(JPG)

Figure S2 Age prevalence during the tenth year of
follow-up. Interventions and transmission settings as in Figure

S1. The lines correspond to the median values of the five

simulations for each model within the ensemble of the prevalence,

computed from values averaged within each simulation over the

full year; the grey area is the envelope delimited by the 2.5 and

97.5 percentiles of the full set of simulations.

(JPG)

Figure S3 Age incidence curves during the tenth year of
follow-up. Interventions and transmission settings as in Figure

S1. The lines correspond to the median values of the five

simulations for each model within the ensemble of the incidence of

clinical episodes, computed from values averaged within each

simulation over the full year; the grey area is the envelope

delimited by the 2.5 and 97.5 percentiles of the full set of

simulations.

(JPG)

Figure S4 Number of clinical episodes averted. The

columns correspond to the initial EIR values, and the rows to the

vaccination strategies simulated. The lines correspond to the

median values of the five simulations for each model within the

ensemble of the incidence of clinical episodes; the grey area is the

envelope delimited by the 2.5 and 97.5 percentiles of the full set of

simulations.

(JPG)

Figure S5 Age incidence of severe disease during the
tenth year of follow-up. Interventions and transmission settings

as in Figure S1. The lines correspond to the median values of the

five simulations for each model within the ensemble of the

incidence of severe disease, computed from values averaged within

each simulation over the full year; the grey area is the envelope

delimited by the 2.5 and 97.5 percentiles of the full set of

simulations.

(JPG)

Figure S6 Age incidence of mortality during the tenth
year of follow-up. Interventions and transmission settings as in

Figure S1. The lines correspond to the median values of the five

simulations for each model within the ensemble of the incidence of

mortality, computed from values averaged within each simulation

over the full year; the grey area is the envelope delimited by the

2.5 and 97.5 percentiles of the full set of simulations.

(JPG)

Figure S7 Number of severe episodes averted. The

columns correspond to the initial EIR values, and the rows to

the vaccination strategies simulated. The lines correspond to the

median values of the five simulations for each model within the

ensemble of the number of severe episodes averted; the grey area is

the envelope delimited by the 2.5 and 97.5 percentiles of the full

set of simulations.

(JPG)

Figure S8 Number of malaria-related deaths averted.
The columns correspond to the initial EIR values, and the rows to

the vaccination strategies simulated. The lines correspond to the

median values of the five simulations for each model within the

ensemble of the number of deaths averted; the grey area is the

envelope delimited by the 2.5 and 97.5 percentiles of the full set of

simulations.

(JPG)

Text S1 Description of models.

(DOC)

Text S2 Plots of model fit to field data: R0063.

(PDF)

Text S3 Plots of model fit to field data: R0065.

(PDF)

Text S4 Plots of model fit to field data: R0068.

(PDF)

Text S5 Plots of model fit to field data: R0111.

(PDF)

Text S6 Plots of model fit to field data: R0115.

(PDF)

Text S7 Plots of model fit to field data: R0121.

(PDF)

Text S8 Plots of model fit to field data: R0125.

(PDF)

Table 4. Effects of the assumption of zero efficacy of incomplete vaccination courses.

Vaccine Deployment Modality Median Relative Effectiveness of Vaccination (Minima, Maxima of 42 Simulations)

Uncomplicated Episodes Severe Episodes Malaria-Related Mortality

EPI 0.93 (0.83, 1.00) 0.95 (0.65, 1.26) 0.89 (0.54, 1.47)

EPI with catch-up 0.88 (0.81, 0.99) 0.92 (0.70, 1.16) 0.88 (0.60, 1.24)

EPI with vaccination of school children 0.77 (0.72, 0.86) 0.91 (0.68, 1.12) 0.91 (0.62, 1.65)

EPI with vaccination of school children
at low coverage

0.72 (0.59, 0.90) 0.87 (0.63, 1.33) 0.85 (0.43, 1.50)

Mass vaccination with high coverage 0.64 (0.53, 0.68) 0.57 (0.00, 1.92) 0.58 (0.04, 1.00)

Mass vaccination with low coverage 0.28 (0.01, 0.34) 0.24 (0.00, 1.57) 0.28 (0.00, 1.50)

The rows correspond to deployment strategies as defined in the main text. The relative effectiveness during the first 10 y of the program is computed as the proportion
of events averted assuming zero efficacy of incomplete courses, divided by the proportion of events averted assuming the reference efficacy of incomplete courses. The
minima and maxima are computed over all 14 models and three simulations for each model. All simulations refer to the 20-ibpa transmission setting.
doi:10.1371/journal.pmed.1001157.t004
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Text S9 Plots of model fit to field data: R0131.

(PDF)

Text S10 Plots of model fit to field data: R0132.

(PDF)

Text S11 Plots of model fit to field data: R0133.

(PDF)

Text S12 Plots of model fit to field data: R0670.

(PDF)

Text S13 Plots of model fit to field data: R0674.

(PDF)

Text S14 Plots of model fit to field data: R0678.

(PDF)
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Editors’ Summary

Background. The World Health Organization estimates that
there are over 200 million cases of malaria each year, and
that more than three-quarters of a million people (mostly
children living in sub-Saharan Africa) die as a result. Several
Plasmodium parasites cause malaria, the most deadly being
Plasmodium falciparum. Plasmodium parasites, which are
transmitted to people through the bites of infected night-
flying mosquitoes, cause recurring fever and can cause life-
threatening organ damage. Malaria transmission can be
prevented by using insecticides to control the mosquitoes
that spread the parasite and by sleeping under insecticide-
treated bed nets to avoid mosquito bites. Treatment with
antimalarial drugs also reduces transmission. Together, these
preventative measures have greatly reduced the global
burden of malaria over recent years, but a malaria vaccine
could be a valuable additional tool against the disease. At
present there is no licensed malaria vaccine, but one
promising vaccine—RTS,S—is currently undergoing phase
III clinical trials (the last stage of testing before licensing) in
infants and children in seven African countries.

Why Was This Study Done? If the RTS,S vaccine fulfills its
promise and is licensed, how should it be used to maximize
its effect on the global malaria burden? Should it be given
through the World Health Organization’s Expanded
Programme on Immunization (EPI), which aims to provide
universal access to immunization against several infectious
diseases during the first three months of life, for example,
or through mass vaccination campaigns? Individual
mathematical models have been used to investigate this
type of question, but the predictions made by these models
may be inaccurate because malaria immunity is poorly
understood, because little is known about the levels of
variability (heterogeneity) in host responses to malaria
infection and in malaria transmission, and because it is
unclear what the structure of models used to predict vaccine
efficacy should be. In this study, the researchers use an
‘‘ensemble’’ approach to model the likely public health
impact of the RTS,S malaria vaccine. That is, they
simultaneously consider the effect of the vaccine in
multiple models of P. falciparum dynamics. Ensemble
modeling is widely used in weather forecasting and has
been used to investigate several other infectious diseases.

What Did the Researchers Do and Find? The researchers
constructed an ensemble of 14 individual-based stochastic
simulation models of P. falciparum dynamics that included
different assumptions about immune decay, transmission
heterogeneity, and access to treatment. Such models
simulate the passage of thousands of hypothetical
individuals through different stages of malaria infection;
movement between stages occurs stochastically (by chance)
at a probability based on field data. Each model was used
to predict the health benefits over 14 years of RTS,S
deployment through EPI (with and without catch-up
vaccination for infants who were not immunized during
their first three months of life), through EPI and
supplementary vaccination of school children, and through
mass vaccination campaigns every five years at malaria
transmission levels of 2, 11, and 20 infectious bites per
person per annum (low, medium, and high entomological

inoculation rates [EIRs], respectively). The predicted benefits
of EPI vaccination programs over the 14-year period were
modest and similar over a wide range of settings. However,
EPI with an initial catch-up phase averted the most deaths
per vaccine dose at higher EIRs. At the lowest EIR, mass
vaccination strategies substantially reduced transmission,
leading to much greater health effects per dose than other
strategies, even at modest coverage.

What Do These Findings Mean? The ensemble approach
taken here suggests that targeted mass vaccination with
RTS,S in low transmission settings may have greater health
benefits than vaccination through national EPI programs.
Importantly, this computer-intensive approach, which used
computers made available over the internet by volunteers,
provides more secure predictions than can be obtained
using single models. In addition, it suggests that predictions
made about the health effects of RTS,S vaccination for low
transmission settings are more likely to be accurate than
those made for higher transmission settings. However, this
study only reports the first stages of using ensemble
modeling to predict the health effects of RTS,S vaccination.
Future studies will need to combine the outputs of multiple
models with economic analyses to provide a rational basis
for the design of vaccine-containing malaria control and
elimination programs.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001157.

N Information is available from the World Health Organiza-
tion on malaria and on malaria immunization; the 2010
World Malaria Report provides details on the current global
malaria situation; WHO also provides information on its
Expanded Programme on Immunization (EPI), and its
Global Immunization Vision and Strategy (some informa-
tion is available in several languages)

N The US Centers for Disease Control and Prevention provide
information on malaria (in English and Spanish), including
a selection of personal stories about malaria

N Information is available from the Roll Back Malaria
Partnership on the global control of malaria and on
malaria in Africa

N The latest results from the phase III trial of RTS,S are
available on the website of the PATH Malaria Vaccine
Initiative, a global program of the international nonprofit
organization PATH that aims to accelerate the develop-
ment of malaria vaccines and ensure their availability and
accessibility in the developing world

N Wikipedia has a page on ensemble forecasting (note:
Wikipedia is a free online encyclopedia that anyone can
edit; available in several languages)

N OpenMalaria is the open source simulator of malaria
epidemiology and control used in this study; BOINC is the
open source software for volunteer computing and grid
computing that was used to run the simulations

N MedlinePlus provides links to additional information on
malaria and on immunization (in English and Spanish)
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