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1 Derivation of the EM algorithm

Introduce latent variables

To use the EM algorithm to fit the model, we introduce the latent variables z’s and u’s, and
rewrite our hierarchical t-mixture models as

zfi, zrj ∼ Multinomial(w), (1)

(fi|Ufik = ufik, zfik = 1, µk, δk) ∼ N
(
µk + δk/2, σ

2
fk/ufik

)
(2)

(rj|Urjk = urjk, zrjk = 1, µk, δk) ∼ N
(
µk − δk/2, σ2

rk/urjk
)

(3)

(Ufik|zfik = 1), (Urjk|zrjk = 1) ∼ Ga(v/2, v/2). (4)

The unknown membership indicator zfi (resp. zrj) indicates which nucleosome a forward
read i (resp. reverse read j) is associated with; both zf and zr share the same multinomial
distribution given by (1). Conditional on the memberships (the z’s), the read positions follow
a t-distribution. We introduce another latent variable u, and rewrite the t-distribution as a
Normal-Gamma compound distribution given by (2 - 4).

Conditional expectation of the penalized log complete data likelihood

From this point, for ease of notation, we use the letter d to denote either f or r. Let us denote
the unknown parameter vector by Θ = (θ1, . . . ,θK) where θk = (wk, µk, δk, σ

2
fk, σ

2
rk), and the

complete data by c = (yf ,yr, zf , zr,uf ,ur). Then the complete data log-likelihood can be
written as

l(Θ|c) =

nf∑
i=1

K∑
k=1

zfik

{
log

[
wkN

(
yfi

∣∣∣∣ µk − δk
2
,
σ2
fk

ufik

)]
+
ν

2
(log ufik − ufik)− log ufik

}

+
nr∑
j=1

K∑
k=1

zrjk

{
log

[
wkN

(
yrj

∣∣∣∣ µk +
δk
2
,
σ2
rk

urjk

)]
+
ν

2
(log urjk − urjk)− log urjk

}
+ (nf + nr)

[ν
2

log
(ν

2

)
− log Γ

(ν
2

)]
.
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Similarly, we define the prior penalty lprior as

lprior =
K∑
k=1

log π(δk, σ
2
rk, σ

2
fk, µk|ρ, ξ, α, β, λ)

=
K∑
k=1

{
1

2
log(σ−2

rk + σ−2
fk )− ρ

2
(σ−2

fk + σ−2
rk )(δ − ξ)2

}
− λ

K−1∑
k=1

(µk+1 − µk − 200)2

+
K∑
k=1

{
(α− 1) log(σ−2

fk )− βσ−2
fk + (α− 1) log(σ−2

rk )− βσ−2
rk

}
+ cst

= −1

2

K∑
k=1

{
(σ−2

fk + σ−2
rk )[ρ(δk − ξ)2 + 2β]− (2α− 1) log(σ−2

fk + σ−2
rk )
}

−λ
K−1∑
k=1

(µk+1 − µk − 200)2 + cst

where cst is a constant.
Given the current estimate Θ− for Θ, the conditional expectation of the penalized log

complete data likelihood is given as

Q(Θ|Θ−)
def
= E[l(Θ|c)|Θ−] + lprior

=
∑

d∈{f,r}

nd∑
i=1

K∑
k=1

z̃dik

{
logwk − log σdk −

ũdik
2

(
di − µdk
σdk

)2
}

+ lprior + cst. (5)

E-Step

The E-step (Peel and McLachlan, 2000) consists of computing the following quantities:

z̃dik
def
= E(Zdki|ydi,Θ−) =

wkt4(di|µdk, σdk)∑K
k=1wkt4(di|µdk, σdk)

, (6)

ũdik
def
= E(Udik|ydi, zdik = 1,Θ−) =

ν + 1

ν + (di − µdk)2/σ2
dk

. (7)

M-Step

During the M-step, the goal is to maximize Q(Θ|Θ−) with respect to Θ, which requires solving
∂Q(Θ|Θ−)/∂Θ = 0. We solve the following equation system to obtain updated parameter
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estimates

0 =
∂Q∗

∂ŵk
=

∑
d∈{f,r}

nd∑
i=1

K∑
k=1

z̃dikw
−1
k ,

K∑
k=1

wk = 1 (8)

0 =
∂Q∗

∂µ̂k
=

∑
j

z̃rjkũrjk
(yrj − µ̂k −

bδk
2

)

σ̂2
rk

+
∑
i

z̃fikũfik
(yfi − µ̂k +

bδk
2

)

σ̂2
fk

+ qk (9)

0 =
∂Q∗

∂δ̂k
=

∑
j

z̃rjkũrjk
(yrj − µ̂k −

bδk
2

)

2σ̂2
rk

−
∑
i

z̃fikũfik
(yfi − µ̂k +

bδk
2

)

2σ̂2
fk

−ρ(σ̂−2
fk + σ̂−2

rk )(δ̂k − ξ) (10)

0 =
∂Q∗

∂σ̂−2
fk

=
∑
i

z̃fik
2

[
σ̂2
fk − (yfi − µ̂k +

δ̂k
2

)2ũfik

]
− ρ(δ̂k − ξ)2 + 2β

2
+

2α− 1

2
σ̂2
fk (11)

0 =
∂Q∗

∂σ̂−2
rk

=
∑
j

z̃rjk
2

[
σ̂2
rk − (yrj − µ̂k −

δ̂k
2

)2ũrjk

]
− ρ(δ̂k − ξ)2 + 2β

2
+

2α− 1

2
σ̂2
rk, (12)

where qk comes from the Gaussian Markov Random Field prior assigned to µk, and is given by

qk =


−2λ(2µ̂k − (µ̂k−1 + µ̂k+1)), if k 6= 1, K,

−2λ(µ̂1 − µ̂2 + 200), if k = 1,

−2λ(µ̂K − µ̂K−1 − 200), if k = K.

Because there is no simple closed form solution for Θ, we adopted a conditional ap-
proach in which we first maximize over (w,µ, δ), conditional on (σf ,σr), and then maxi-
mize over (σf ,σr), conditional on the previously updated (w,µ, δ), resulting in an Expecta-
tion/Conditional Maximization (ECM) algorithm (Meng and Rubin, 1993). Conditionally on

σfk and σrk, the parameters (ŵk, µ̂k, δ̂k) are updated by the unique solution of the linear system

given by (8 - 10). Similarly, conditionally on these new estimates ŵk, µ̂k, δ̂k, we can then solve
a linear system given by (11 and 12).

2 Post-processing PING results

Given the range of cases that short-read data present to PING’s mixture modeling, we detect
and post-process certain problematic events within the results that the mixture model returns.

2.1 Mismatched peaks

When one of a nucleosome’s forward/reverse density profile peaks is much more asymmetric
and/or taller than the other, mixture models may use different number of components to
describe the F peak and R peaks of the same nucleosome. In such a case, unmatched mixture
components within a nucleosome will be matched to components of other nucleosomes, which
will cause subsequently processed nucleosomes to have mismatched components and incorrectly
estimated center locations. We detect such problems as atypical estimated δ outside of the range
of (80, 250), or as un-fittable models, and fit a new model to such a candidate region, using a
stronger prior on δ. For such a new prior we set ρ = 8, which reduces the prior’s standard error
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to be in the range (7, 16). While this strong prior helps address the mismatch problem, it is
too strong to be used globally, as the range of true δ is much wider than it permits.

2.2 Missing nucleosomes

A nucleosome may have much higher F/R density profile peaks than its neighbouring nu-
cleosomes in the same candidate region. In such a case, mixture models tend to use many
components to describe the nucleosome with tall peaks, while using a single component to de-
scribe multiple low-peak nucleosomes, and PING can fail to detect some low rank nucleosomes.
We can detect such problems by looking for predictions with forward and reverse peaks that
are too wide (σf , σr > 50 for MNase, and σf , σr > 70 for sonication), then extracting reads
within a distance of 2σ from the estimated peak centers, and refitting the model with these
reads. This is typically effective, since reads from higher peak are excluded in the new fitted
model, and new hyper-parameters α = 100 and β = 100000 are used to ensure that the 95%
CI of prior σ is (20, 25).

2.3 Duplicate predictions

When we divide a long candidate region into shorter regions, some care is needed. The concern
arises because, when a nucleosome is near the cutting point, enough reads could be present in
each of the new candidate regions that the same nucleosome can be predicted in both of the new
candidate regions. To address this, when we find predicted nucleosomes that are in adjacent
candidate regions and are within 100 bp of each other, we extract reads from and between these
two nucleosomes and refit the model. We let the new fitted model decide whether or not to
merge the duplicates into a single nucleosome prediction or to retain both predictions.

3 PING’s parameters

In this section, we summarize PING’s parameters, giving default/suggested values and describ-
ing the effects of changing these values.

3.1 Segmentation parameters

Overall, the tuning parameters used in the segmentation step have very little effect on the final
results. This being said, for clarity, we describe each parameter and its effect on the model, as
follows.

• w = 300. The default width of the sliding window is 300 bp. Small changes in the window
width have minimal effects on the locations of predicted nucleosomes. We recommend
users change the default value only when a large proportion of DNA fragments in their
experiment are longer than 300 bp.

• s = 2. The default sliding window step size is 2 bp. While changing this value will change
the resolution of segmentation step, hence might change the boundaries of candidate
regions, we assessed values ranging from 1 to 5 and saw only minor changes. A value of
s = 1 could be used at the cost of increasing the overall computing time.
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• n = 5. A sliding window is retained if at least 5 forward and 5 reverse reads are re-
spectively observed in the left and right halves of the sliding window. Using a smaller
value of n should return more low-rank nucleosome predictions. These will require more
computing time for model fitting, but will have lower enrichment and confidence levels,
hence may be less useful. In any case, we recommend using a value of n larger than 2 to
ensure that all regions have enough reads to estimate the model parameters. High-rank
predicted nucleosomes (i.e. the nucleosomes of interest, true positives) will not be affected
by slight changes in n.

3.2 Model fitting parameters

The hyperparameters of the prior distribution were chosen empirically based on prior knowledge
about the data sets described in this work and other similar studies. We first chose the mean
of the prior distribution for δ, namely ξ, which can be seen as our best estimate of the average
fragment length, and then chose the other hyperparameters so that the variability around this
prior guess matched our prior knowledge. This resulted in the following parameters for the two
type of datasets used here:

• For MNase-seq data, we use α = 20, β = 20000, ρ = 3, and ξ = 150, which results in
estimated lengths of DNA fragments, δ, of between 100 and 200 bp.

• For ChIP-seq data, we use α = 10, β = 20000, ρ = 1.2, and ξ = 150, which results in δ
values between 50 and 250 bp.

These priors are mildly informative; slight changes in their values should have little effect on
the resulting inference, especially for highly enriched nucleosomes.
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