A literature review was used to obtain stable isotope values for all known and potential white shark prey in the ENP, and potential prey were grouped according to the three defined regions in order to isotopically characterize the different focal areas (Table 1).  By including a diversity of potential prey, the variability associated with our regional estimates increased and provided a more conservative estimate of the mean regional value. If isotope data for a particular species and region were available from multiple studies, the study that had the largest sample size was used. A prey species’ isotopic values are assumed to be representative of both that species and taxa with similar trophic ecologies (e.g. tuna represent upper trophic level pelagic fish) and habitats. Although there are isotopic studies of potential white shark prey, many use different tissue substrates (muscle, bone collagen, tooth dentin), which may have different isotopic values based on metabolic fractionation processes or tissue incorporation rates 
 ADDIN EN.CITE 
[1,2,3]
. To account for differences in discrimination between muscle and collagen (bone and tooth dentin) in marine mammals, the only prey for which collagen values were reported, we adjusted collagen δ13C values to resemble muscle values [4]. Because collagen turns over at a much slower rate than muscle, often integrating diet over years [3] this correction assumes that the long term diet recorded by bone is comparable to the shorter term diet recorded by muscle. Nitrogen stable isotope values were not adjusted because there is little variation in nitrogen fractionation between muscle and collagen in mammals [4,5].

The diet of white sharks in coastal California has been qualitatively described and there are a relatively high number of prey species from the region that have been characterized isotopically; therefore, the California regional estimate is likely robust in its categorization of white shark prey. Central California white sharks are believed to feed extensively on marine mammals (especially pinnipeds) 
 ADDIN EN.CITE 
[6,7,8,9]
. Only isotope values from marine mammals that were sampled in the neritic waters of California were used as the California group (Table 1) 
 ADDIN EN.CITE 
[10,11,12,13,14,15]
.
There is a lack of basic information regarding white shark foraging ecology when offshore. In addition, there are few published stable isotope data for potential prey species in offshore habitats and no samples have been collected directly within the Café. However, the Café is part of the eastern subtropical gyre; thus species sampled from nearby regions of this large oceanographic region that have similar oceanographic conditions and biogeochemical processes 
 ADDIN EN.CITE 
[16,17,18,19,20]
 should be isotopically similar to those species in the Café. In addition, potential prey of white sharks in offshore habitats includes species that are not residents of the Café or Hawaii but occur seasonally in these regions and therefore might be encountered by white sharks in offshore habitats. As a result, stable isotope values from organisms sampled in different regions of the ENP were used to define the Pelagic region, which generally covers offshore, pelagic habitats between Hawaii and California, and serves as our proxy for the Café and similar habitats.

Several potential prey items in the Pelagic group were caught in the California Current System, but due to known migratory patterns could be encountered by white sharks when offshore. Blue shark (Prionace glauca) values from the west coast of the U.S. (Robert Leaf, Virginia Tech, unpublished data) were used because this species is a widely distributed and highly migratory species 
 ADDIN EN.CITE 
[21,22,23]
 that is known to occur in the Café and be consumed by white sharks [24] making these values our best estimate for a pelagic shark species that white sharks may encounter during offshore periods. Similarly, albacore (Thunnus alalunga) and bluefin tuna (Thunnus orientalis) values (Daniel J. Madigan, unpublished data) are from fish caught in the California Current, but electronic tag and isotopic data suggest that these values are representative of fish that foraged in offshore pelagic habitats away from California prior to being caught in California.

Ommastrephid squid used in the Pelagic region are from areas to the north of Hawaii, as far north as 45°N 
 ADDIN EN.CITE 
[25,26,27]
, but the isotopic composition of these squid is likely representative of the squid that white sharks may encounter in the Café. These squid either forage at higher latitudes along the North Pacific transition zone [28] and migrate south to spawn in waters in the subtropical gyre during the period when white sharks are present (neon flying squid O. bartramii) or are resident in the subtropical gyre throughout the year and spawn in the spring and summer when white sharks are present (purpleback flying squid S. oualaniensis) 
 ADDIN EN.CITE 
[29,30,31,32]
. The Pacific pomfret, sampled to the north of Hawaii, is one of the dominant large pelagic fishes in the ENP and was used as a representative mid- to upper trophic level pelagic fish, and like the neon flying squid makes seasonal migrations from the transition zone or subarctic waters to subtropical waters to spawn during winter and spring 
 ADDIN EN.CITE 
[33,34]
. We used the northern right whale dolphin, sampled to the north of Hawaii, as a representative of small mid- to upper-trophic level cetaceans in offshore pelagic habitats.
This species is abundant in offshore waters of the North Pacific [35], and was the most frequently killed small cetacean in the high-seas driftnet fishery in the North Pacific [36]. Although the Café is at the southern extent of their range, their abundance throughout the North Pacific suggests that white sharks may encounter them when offshore.

Data for the Hawaii region are from the nearshore waters of the Hawaiian Islands as well as pelagic waters to the south 
 ADDIN EN.CITE 
[37,38,39]
. The Hawaii value comprised four species: bigeye tuna (Thunnus obesus), yellowfin tuna (Thunnus albacares), purpleback flying squid (Sthenoteuthis oualaniensis), and humpback whales (Megaptera novaeangliae). Electronic tagging studies 
 ADDIN EN.CITE 
[40,41,42]
 and isotopic studies [20] have shown that bigeye and yellowfin tuna in the Pacific exhibit restricted horizontal movements and display a relatively high degree of regional residency, indicating that the isotopic composition of Hawaiian tuna used in this study represent a reasonable estimate of upper trophic level pelagic fishes that white sharks may feed upon in nearshore Hawaiian waters [20], as these tuna were all caught at nearshore fish attracting devices in the main Hawaiian Islands [38]. Humpback whales sampled in coastal Hawaiian habitats feed at high latitudes in the North Pacific and migrate to Hawaii to calve 
 ADDIN EN.CITE 
[13,37]
. The squid used in the Hawaii region (Douglas McCauley, Hopkins Marine Station of Stanford University, unpublished data) are from offshore pelagic habitats (approximately 6 - 7°N, south of the main Hawaiian Islands) from southern extent of the Hawaiian white shark focal area and were sampled during May, when white sharks may occur in that region [43].
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