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Table S1: Model parameter values

Symbol Value Exp. References
Vm1 1.3× 10−3 M/min Ref. [1]
Vm2 1.2× 10−2 M/min Ref. [2]
Vm3 1.4× 10−3 M/min Ref. [3]
Km1 10.0× 10−5M Ref. [4]
Km2 5.0× 10−5M Ref. [5]
Km3 3.0× 10−5M Ref. [6]
K2 6.3× 10−5M Ref. [4]
K3 10.0× 10−5M Ref. [4]
Kd2 3.5× 10−5M Ref. [7]
Kd3 2.9× 10−5M Ref. [8]
Kd4 22.5× 10−5M Ref. [9]
L1 6.0× 105 Ref. [10]
L2 103 Ref. [9]
c 10−5 Ref. [2]
q1 8.0× 10−4Hz Free parameter
q2 6.9× 10−2Hz Free parameter
ω 7.6× 10−3Hz Free parameter
λ1 2.0 sec Free parameter
λ2 0.6 sec Free parameter

To the date the kinetics of individual enzymes in cellular conditions cannot be yet accurately deter-

mined. However, in-vitro studies give very precise quantifications of the enzymatic rate equations and

their kinetic parameters. When in metabolic models it is considered the kinetics of irreversible enzymes,

the kinetic laws observed in-vitro might work in-vivo as well. This does not mean that the in-vivo behav-

ior is fully explained by in-vitro studies. But if one accounts for the dissipative conditions, as it can be

done in numerical simulations, the in-vitro kinetic laws might be valid in physiological conditions. For

these reasons, it is advisable to use dynamical models to study metabolism in which the molecular mech-

anisms of the irreversible enzymes are gathered by the in-vitro kinetics. These models take into account

the dissipative mechanisms which are generating the instability present in far-from-equilibrium systems.
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Therefore, an alternative to investigate the dynamics of metabolic pathways is to use the biochemical

knowledge, gathered by the in-vitro kinetics of the irreversible enzymes, to predict the system catalytic

behavior to eventually compare the prediction with experimental data [11].
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