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1. Extended version of Table 1 

Transition  Organism  TR  Inhibitor  Reference  TR – I 

interaction 

Activator  Reference TR – A 

interaction 

ChP  Reference ChP PFB  References  PFB 

G2/M  Fission yeast  

S. pombe 

Cdc2/Cdc13  Wee1  (Aligue et al, 1997; 

Russell and Nurse, 

1987) 

Cdc25  (Kovelman and 

Russell, 1996; 

Russell and Nurse, 

1986) 

B (O'Connell et al, 

2000; Rhind and 

Russell, 1998) 

B  (Aligue et al, 

1997; Kovelman 

et al, 1996) 

Budding yeast 

S. cerevisiae  

Cdc28/Clb2  Swe1  (Harvey et al, 2005) Mih1  (Pal et al, 2008) I  (Sia et al, 1998) B (Booher et al, 

1993; Pal et al, 

2008) 

Fly  

D.  melanogaster 

Cdk1/CyclinB  Wee1, Myt1  (Campbell et al, 

1995; Stumpff et al, 

2004) 

String  (Edgar and 

O'Farrell, 1990) 

B (Sibon et al, 

1997) 

I (Price et al, 2000) 

Frog 

X. laevis  

Cdc2/CyclinB  Wee1, Myt1  (Mueller et al, 

1995) 

Cdc25  (Kumagai and 

Dunphy, 1992) 

B (Kumagai and 

Dunphy, 1999; 

Stanford and 

Ruderman, 

2005) 

B (Coleman and 

Dunphy, 1994; 

Karaiskou et al, 

1998) 

Human  

H. sapiens 

Cdc2/CcnB1,2  Wee1hu 

Myt1 

(Parker and 

Piwnica-Worms, 

1992; Watanabe et 

al, 2005; Watanabe 

et al, 1995) 

hCdc25c  (Hoffmann et al, 

1993) 

B (Deibler and 

Kirschner, 2010; 

Donzelli and 

Draetta, 2003; 

Lukas et al, 

2004; Sanchez 

et al, 1997) 

B (Deibler et al, 

2010; Enders, 

2010) 

M/G1  Budding yeast  

S. cerevisiae 

 

Cdh1, Sic1  Cdc28/Clb2  (Nash et al, 2001; 

Zachariae et al, 

1998) 

Cdc14  (Jaspersen et al, 

1999; Visintin et al, 

1998) 

A (Queralt and 

Uhlmann, 2008; 

Yoshida et al, 

2002) 

I  (Amon, 1997; 

Visintin et al, 

1997) 

Pds1 (INH) Cdc14
#
  (Visintin et al, 1998) Cdc28/Clb2

#
  (Agarwal and 

Cohen-Fix, 2002) 

I (Queralt et al, 

2008; Yoshida 

et al, 2002) 

I  (Holt et al, 2008) 

Fission yeast  

S. pombe 

Wee1, (Cdc25  

inactivation) 

Cdc2/Cdc13  (Aligue et al, 1997; 

Kovelman et al, 

1996) 

Clp1  (Esteban et al, 

2004; Wolfe and 

Gould, 2004) 

A (Chen et al, 

2008; Mishra et 

al, 2004; Wolfe 

et al, 2006) 

I  (Aligue et al, 

1997; Kovelman 

et al, 1996) 
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Human  

H. sapiens 

Wee1hu 

(hCdc25c 

inactivation) 

Cdc2/ 

CcnB1,2  

(D'Angiolella et al, 

2007; Potapova et 

al, 2009) 

Cdc14A or 

PP2A 

(Bollen et al, 2009; 

Burgess et al, 2010; 

Krasinska et al, 

2007; Queralt et al, 

2008) 

A (Mailand et al, 

2002) 

B (Burgess et al, 

2010; Kapuy et al, 

2009; Potapova et 

al, 2009) 

  Cdh1 Cdc2/ 

CcnB1,2 

(Kramer et al, 2000) Cdc14A  (Bembenek and Yu, 

2001) 

A (Mailand et al, 

2002) 

I (Kramer et al, 

2000) 

G1/S Budding yeast  

S. cerevisiae 

Swi6  Cdc14
#
 (Bloom and Cross, 

2007; Geymonat et 

al, 2004) 

Cdc28/Clb6
#
 (Schwob and 

Nasmyth, 1993) 

A  (Palou et al, 

2010) 

A  (Schwob et al, 

1993) 

 Whi5 (INH) Cdc28/Cln3 (Costanzo et al, 

2004; de Bruin et al, 

2004) 

Cdc14 (Taberner et al, 

2009) 

I (Tyers and 

Futcher, 1993) 

I (Costanzo et al, 

2004; de Bruin et 

al, 2004) 

Fission yeast  

S. pombe 

Cdc2/Cig2  Mik1  (Zarzov et al, 2002) Pyp3  (Millar et al, 1992) I  (Murakami and 

Nurse, 2000) 

A (Sveiczer et al, 

1999) 

Human  

H. sapiens 

Cdk2/CycE,A  Wee1hu (Parker et al, 1992; 

Watanabe et al, 

2005; Watanabe et 

al, 1995) 

hCdc25a  (Boutros et al, 

2006) 

A (Donzelli et al, 

2003; Lukas et 

al, 2004; 

Mailand et al, 

2000) 

A (Hoffmann et al, 

1994) 

  Rb1 (INH) Cdk6/CycD 

Cdk2/CycE 

(Lundberg and 

Weinberg, 1998) 

PP1 (Durfee et al, 1993) I (Wade Harper 

et al, 1993) 

I (Geng et al, 1996) 

Transition  Organism  TR  Inhibitor  Reference  TR – I 

interaction 

Activator  Reference TR – A 

interaction 

ChP*  Reference ChP PFB

*  

References  PFB 

Table S1. Cell cycle transition regulators in various organisms, including references for all claims. Similar to Table 1 of the main text, 
just here we add references that support our claims on the roles of activator and/or inhibitors in checkpoint regulation (ChP) and their positive 
feedback (PFB) interactions with the transition regulators (TR). Checkpoint regulation (ChP) and positive feedback loop (PFB) notation: A- 
acting through activator, I - through inhibitor, B- through both of them. Blue, bold letters note genes that are periodically expressed during the 
cell cycle in system wide studies (Gauthier et al, 2010); controversially to this hCdc25c was found static in individual experiments (Donzelli 
et al, 2003). Note that all regulations are by phosphorylation – dephosphorylation reactions, with activators being phosphatases and inhibitors 
being kinases, except two reverse systems, noted by #. At the M/G1 transition of fission yeast cells Wee1 is activated and Cdc25 is inactivated 
after dephosphorylation by Clp1 (Wolfe et al, 2004), similarly Wee1hu is activated and Cdc25c is inhibited during the human M/G1 transition 
(Potapova et al, 2009) these effects are lumped together in one row of this table. (INH) sign and italic letters for the whole row means the TR 
is an inhibitor of the cell cycle transition, thus all effects on it are acting with reverse sign to the transition.     
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2. Model development 

Here we present in detail the various models we used in the paper. Figure S1 shows a 
complete picture of all the main species and all their interactions ��(0 < i < 29) the kinetics 
laws of which are detailed in Table S2.  

 

Figure S1: Detailed interaction map of the generic cell cycle transition regulator. Solid 
arrows represent reactions, while dashed arrows represent activating effects. In brackets we 
note the reactions where transcription factors (TFs) and checkpoint proteins (ChPs) act. 
 
In the model notation we follow, TR* and TR represent, respectively, the active and inactive 
forms of the transition regulator, inhibitor*  and inhibitor represent, respectively, the active 
and inactive forms of the inhibitor and activator* and activator represent, respectively, the 
active and inactive forms of the activator. In detail, TR* activates activator and inhibits 
inhibitor* . Although TR (the inactive form of the transition protein) acts on the activator and 
the inhibitor in the same way as TR*, its efficiency is 100 times lower, as proposed by others 
after theoretical and experimental observations (Ciliberto et al, 2007; Deibler et al, 2010). 
Moreover, note that both the activity of TR* (and TR) on inhibitor*  and on activator form 
positive feedbacks (PFB); activator* activates TR* and inhibitor inhibits it. The checkpoint 
moves inhibitor to a hyperactive form, #inhibitor that is four times stronger inhibitor of TR* 
than the normally active (but not checkpoint affected) inhibitor*  form. This way of 
implementing checkpoint activation was taken from an earlier model of morphogenetic 
checkpoint of budding yeast cells (Ciliberto et al, 2003). 
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Table S2: Kinetic laws associated to reactions, corresponding to notation on Figure S1. 
The values associated to basal parameters are reported in Table S3. 
 
Syntheses and degradations follow the law of mass action, while all the other reactions follow 
the Michaelis-Menten kinetics; parameters starting with character k are the catalytic constants 
(dimension 1/min), while parameters starting with j are the Michaelis constants 
(dimensionless). Moreover, since we describe systems in terms of explicit molecule counts 
and not in terms of concentrations, we introduce a scaling factor α which is used to represent 
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the size of the system - volume of the cell, as described earlier (Mura and Csikasz-Nagy, 
2008).  
 
��� = 0.004 �
� = 2 �
� = 0.01 �
!� = 0.1 

��� = 0.5 �
� = 0.1 �
�� = 0.01 �
!� = 0.2 

��� = 1 �
� = 0.2 �
!� = 2 �
!� = 2 

��� = 0.5 �
� = 0.1 �
!� = 0.1 �
!% = 2 

��� = 1 ���� = 2 �
!� = 0.1 �
!( = 0.2 

��� = 0.002 �*� = 0.5 �
!% = 0.1 �
!	 = 0.2 

���� = 0.002 �*� = 0.5 �
!( = 0.1 �
!� = 0.2 

�*� = 0.2 �*�� = 2 �
!	 = 0.1 �
! = 0.1 

�*� = 0.1 �*� = 0.1 �
!� = 0.1 !,�
 = 0.01 

�*� = 2 �
� = 0.01 �
! = 0.1 � = 1/500 

 
Table S3: Basal parameters set. 

 
All the molecular species that are present in the expressions of Tables S2 but not in Figure S1 
have constant population, representing background activities of constantly present kinases 
and phosphatases. In particular, E1 activates the inhibitor (and also #inhibitor), while E2 
inhibits the activator*, both are needed to give a threshold for the autocatalytic TR* induced 
autocatalysis. Moreover, S is representing a background signal, activating activator in case 
the PFBA is removed and there is no activation of activator by TR*. Species ChPA and ChPI 
are introduced to represent checkpoints on the activator and the inhibitor, respectively. While 
ChPA promotes the inhibition of the activator, ChPI transforms the inhibitor into the more 
active #inhibitor form (see above). 
 
When we say that TFI acts on the inhibitor we introduce the synthesis reaction R10 and all the 
corresponding degradation reactions R9, R11, R23 and R24. In the same way, when we say that 
TFA acts on the activator we refer to the synthesis reaction R16 and all the corresponding 
degradation reactions R15 and R17. In case there is no transcriptional regulation of the 
activator or inhibitor then we keep the above parameters at 0 and use a constant high (500 
molecules) total activator or inhibitor level (see Table S4 for details). 
 

 
 

Explanation of model notation. The possible 24 combination of models are represented by 
the following way: the main character tells which positive feedback is present in the model 
(e.g. in the example B means that both positive feedbacks are present); the subscript 
character tells weather TF acts on the inhibitor or on the activator (e.g. in the example on the 
activator); the superscript character tells where acts the checkpoint (e.g. in the example the 
checkpoint acts on the inhibitor). 
 

Model inhibitor*  activator TFTR E1 E2 ChPA ChPI Pho S 

67 500 0 500 500 500 0 0 0 0 
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68 0 500 500 500 500 0 0 0 0 

677 500 0 500 500 500 500 0 0 0 

687 0 500 500 500 500 500 0 0 0 

678  500 0 500 500 500 0 500 500 0 

688 0 500 500 500 500 0 500 500 0 

679 500 0 500 500 500 500 500 500 0 

689 0 500 500 500 500 500 500 500 0 

$7 500 0 500 500 500 0 0 0 30 

$8 0 500 500 500 500 0 0 0 40 

$77 500 0 500 500 500 500 0 0 30 

$87 0 500 500 500 500 500 0 0 40 

$78  500 0 500 500 500 0 500 500 30 

$88 0 500 500 500 500 0 500 500 40 

$79 500 0 500 500 500 500 500 500 30 

$89 0 500 500 500 500 500 500 500 40 

-7 500 0 500 500 500 0 0 0 0 

-8 0 500 500 500 500 0 0 0 0 

-77 500 0 500 500 500 500 0 0 0 

-87 0 500 500 500 500 500 0 0 0 

-78  500 0 500 500 500 0 500 500 0 

-88 0 500 500 500 500 0 500 500 0 

-79 500 0 500 500 500 500 500 500 0 

-89 0 500 500 500 500 500 500 500 0 
 
Table S4: Initial conditions (in molecule numbers) for all the possible model combinations. 
The initial populations of molecular species not present in the table is always 0. This means 
that we assume that before the transition the activator is either not present (but actively 
transcribed), or present in its inactive form. The inhibitor is either not present (but actively 
transcribed) or present in its active form. Meaning that not periodically transcribed activator 
and inhibitor molecules are assumed to be present in TR unaffected form in high level (500 
molecules).  Details on the model notations are given above. 
 
The 24 different models represent combinations of the three regulatory effects (transcription, 
positive feedback and checkpoint): 

• we considered two models, denoted by 67 and 68 , that have PFB both on the 
inhibitor and the activator, have no checkpoints (i.e., ChPA and ChPI set to 0) and are 
such that one (67) has TF acting only on the activator and the other (68) has TF acting 
only on the inhibitor. Then we consider models pairs 677, 687 and 678 , 688 that are 
obtained from 67 and 68 by adding checkpoint ChPA or checkpoint ChPI, 
respectively; 

 
• we considered two models, denoted by $7 and $8, that have PFB only on the inhibitor, 

have no checkpoints (i.e., ChPA and ChPI set to 0) and are such that one ($7) has TF 
acting only on the activator and the other ($8) has TF acting only on the inhibitor. 
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Then we consider models pairs $77, $87 and $78 , $88 and $79, $89 that are obtained from $7 
and $8 by adding, respectively, checkpoint ChPA, checkpoint ChPI or both the 
checkpoints – here we needed to introduce molecule S to induce some activation of 
activator in the absence of PFB on activator; 

 
• we considered two models, denoted by -7 and -8, that have PFB only on the 

activator, have no checkpoints (i.e., ChPA and ChPI set to 0) and are such that one 
(-7) has TF acting only on the activator and the other (-8) has TF acting only on the 
inhibitor. Then we consider models pairs -77, -87 and -78 , -88 that are obtained from -7 
and -8 by adding checkpoint ChPA or checkpoint ChPI, respectively. 

3. Model implementation 

All the models presented in the previous section have been implemented in BlenX (Dematté 
et al, 2010) and simulated by means of the Beta Workbench (Dematte et al, 2008). The 
peculiar characteristics of BlenX allowed us to write a complete model from which, thanks to 
the modularity of the language, all the different models are obtained by commenting the 
fragments of code we are not interested in. 
 
The basic metaphor of BlenX is that a biological entity (i.e., a component that is able to 
interact with other components to accomplish some biological functions) is represented by a 
computational device called box. A box has a set of interfaces and an internal program and 
can be graphically represented. Interfaces have associated types and they are used by a box to 
interact with other boxes; the internal program, instead, codifies for the set of actions that a 
box can perform after a specific interaction with another box in the system has happened. For 
example, if a box is modeling a protein, its interfaces may represent sensing and effecting 
domains.  

 
 
Boxes as abstractions of biological entities. The small squares on the border of the box are 
the interfaces; x and y are the interface subjects (omitted when not necessary); t1 and t2 are 
the interface types (omitted when not necessary); P is the internal process and B is the name 
of the box. Subjects are used by the internal program to refer to interfaces.  
 
Through sensing domains the protein receives signals that are then propagated through the 
internal actions to activate/inactivate a set of effecting domains. The exchange of signals can 
happen between boxes whose interfaces have a certain degree of affinity, which codes the 
strength of their interaction. These affinities are calculated by definable expressions, which 
can be declared as simple real numbers if the reaction that they are accounting for is an 
elementary mass action law, or they can be arbitrary functions (e.g., Michaelis-Menten, Hill 
response,…) if the reaction is an aggregated process whose elementary mechanism of 
interaction between entities is not known. 
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We use a small simplified example to introduce briefly the language and the methodology 
(design pattern) we used to implement our models. Consider two boxes B1 and B2 
representing, respectively, activator and TR: 
 

 
 

Boxes of activator and TR. 
 
For both boxes interfaces with subject rec represent sensing domains, and are used by our 
proteins to receive activation and inhibition signals. Interfaces with subject out represent 
effecting domains, and are used by our proteins to send activation and inhibition signals. 
Types with subscript 0 represent sensing domains of proteins in active forms, while types 
with subscript 1 represent sensing domains of proteins in inactive forms. Moreover, types 
with subscript S represent effecting domains of proteins in active forms, while types with 
subscript I  represent effecting domains of proteins in inactive forms.  
 
Box B1 can execute a sequence of actions, starting with rec?(), in parallel (denoted with | 
symbol) with the action out!(). The action out!() sends a signal through interface with subject 
out. The primitive rec?() waits a signal on the interaction site with subject rec that enables 
the change of the types of both interfaces by means of the sequence of actions ch(rec, 
tr0).ch(out, trS). The same holds for box B2.  
 
Given the structure of boxes B1 and B2, when types tr1  and cdcS are affine, the two boxes 
can interact by synchronizing on the corresponding interfaces through the corresponding 
out!() and rec?() actions. Specifying the affinity between types tr1  and cdcS as an 
expression representing the kinetics law used to describe reaction �� (see Table S2), we have 
that the B1 and B2 interaction follows the Michaelis-Menten kinetics, causing the 
transformation of box B2 into B2’, which represents the active protein TR*: 
 

 
 

Boxes of activator and TR* after TR activation. 
 
Specifying the affinity between types trS and act0 as an expression representing the kinetics 
law used to describe reaction �  (see Table 1), we have that also B1 and B2’ can perform an 
interaction, which causes the transformation of B1 in a box that represents the inactive 
protein activator.  
 
This small and simplified example shows how we can implement our protein species as boxes 
following a common methodology, using simple and reusable internal programs; moreover, it 
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shows how the ability of a protein to activate or inhibit another protein is specified through 
the specification of the affinity relation between the types. 
 
Stochastic simulations are performed by means of the Beta Workbench stochastic simulator 
(Dematte et al, 2008), which implements a variant of the Gillespie algorithm (Gillespie, 
1977) based on the Gibson and Bruck implementation (Gibson and Bruck, 2000). 
 
A complete and detailed description of BlenX can be found in (Dematté et al, 2010), along 
with a more detailed description of the implementation methodology adopted and here briefly 
introduced. 
 

4. Simulations of GO and STOP transcriptional regulations 

Figure 2 plots simulations of the basic models BA and BI, without checkpoint, with positive 
feedback on both inhibitor and activator, and with periodic transcription on either activator 
or inhibitor, respectively. Transcription factors TFA and TFI are activated at time t = 0, 
together with TFTR. When TFs are present in high amount (top row) then the transitions look 
qualitatively the same, the threshold of TR* = 150 is reached approximately after the same 
time. On the contrary, when TFs are present in low amount (bottom row) then the two models 
behave totally differently. 1/10 of the normal TFA level seems to be too weak transcriptional 
input to induce a transition ever. The same 10 times lower transcription of inhibitor cannot 
delay the transition and TR* turns into its active form soon after it is produced. Thus a 
transcriptional failure of TFA acts as a STOP signal to the transition, while a failure of TFI 
gives a GO signal.  

 

Figure S2: Transcriptional STOP and GO controls with positive feedback only on the 
inhibitor (a) or only on the activator (b). Here we plot the active forms of the key molecules 
of (a) model IA (right) and II (left) and (b) AA (right) and AI (left) at high (top) and low 
(bottom) transcription factor levels. Black: TR*, red: inhibitor*, green; activator* 
 
Similarly, Figure S2a plots simulations of the basic models IA and II. When TFs are present in 
high amount (top row) then the transitions look qualitatively the same, the threshold of TR* = 
150 is reached approximately after the same time. Note that here the transition is less sharp 
compared to the one in Figure 2. Although in the figure model II tends to reach the threshold 
earlier, values of S signal (30 and 40 for models IA and II., respectively) have been chosen to 
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let the two models having the transition in average at approximately the same time. Also in 
this case when TFs are present in low amount (bottom row) then the two models behave 
totally differently. Also in this case a transcriptional failure of TFA acts as a STOP signal to 
the transition, while a failure of TFI gives a GO signal. 
 
Finally, Figure S2b plots simulations of the basic models AA and AI. Also in these cases 
simulation results show the same dynamics of the ones reported in Figures 2 and S2a, both 
when TFs are present in high amount and when TFs are present in low amount. Note however 
that when the TFs are present in high amount, although the transition is sharp, we have that 
the maximal value of TR* is lower; indeed, since the inhibitor is always present only in its 
active form, the system is not able to convert all the TR into TR*. 
 
Worth to notice is the effect of the noise on transcription on the noise in protein levels. In the 
right panels of Fig S2a,b the inhibitor is under transcriptional control and as a result the 
inhibitor* level is much noisier. Similar, although less obvious increase in activator* noise 
can be observed when the activator is under transcriptional regulation. On Fig S2b left panel 
the inhibitor is not affected neither by transcription or feedback regulation, so we ended up 
using a constant value for its level. 

5. Simulation methods and details on the main figures of the paper 
 
Here we provide details on the different analyses we performed on our models and presented 
in the figures of the main text.  
 
Robustness of the different models to perturbation in timing of transcriptional 
induction of activator or inhibitor relative to the  transcriptional induction of TR 
(Figure 3 and Figure S3). We considered model pairs 67/68 , $7/$8 and -7/-8 ; in red are 
depicted results of models with TFI acting on the inhibitor, while in green results of models 
with TFA acting on the activator. For each of these models we considered 31 different 
variants where TFs are assumed to be induced at different timings in the set: 
 

{−50,−45,−40, …,−5, 0, 5, …, 40, 45, 50,…,90,95,100} 
 
With time 0 we refer to the time point where the transcription of TR is initiated (TFTR is set 
from 0 to 500). For times greater than 0, we used a specific feature of BlenX that allowed us 
to start simulations with TFI and TFA equal to 0 and to change, at the desired time, the 
amount of TFs from 0 to 500. For times less than 0, we run simulations with initial 
populations of activator and inhibitor that reflect the assumption of a TFA or TFI induction in 
advance. In particular, to calculate these initial populations of activator and inhibitor, we 
used the formula: 
 

,:∗; ∗ <� ∗ ,=:∗; − �?
� ∗ 500 

 
where s is the synthesis rate, d the degradation rate and t is the transcriptional induction time. 
For each of these 186 models we ran 1000 stochastic simulations and measured, for each 
simulation, the time at which TR* reaches population 150 (which value corresponds to the 
approximate inflection point on the TR* activation curve, see Figure 4 top panels). We used 
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the stochastic simulations to calculate means and standard deviations of transition times that 
are presented by solid lines and background shading, respectively, on Figure 3 and Figure S3. 
 

 
Figure S3: Bistability in cell cycle transitions under various control models. This figure 
extends Figure 3 in the main text with all the other considered models. 
 
Bistability in cell cycle transitions under various control models (Figure 4 and Figure 
S4). We considered models 67, 68, $7, $8, -7 and -8; in red are depicted results of models 
with TF on the inhibitor, while in green results of models with TF on the activator. For each 
of the models we set parameter kms to an initial value of 0.0001 and used a specific feature of 
BlenX that allows to update the value of a parameter when time reaches a certain value. In 
each single simulation we increased the value of kms by adding 0.0001 at times 5000, 10000, 
15000, …, 95000 and decreased its value by subtracting 0.0001 at times 100000, 105000, …, 
190000. Hence, in a single simulation the value of kms is increased at fixed time intervals 
from value 0.0001 to value 0.002 and then decreased in the same way from value 0.002 to 
value 0.0001 again.  

For each of these 6 models we ran 100 stochastic simulations and for each simulation 
we calculated in each time interval [(i-1)*5000,i*5000] (with i=1,…,39) the mean values of 
TR* inside the sub-intervals [i*5000-2000,i*5000]; we calculated hence the steady state 
values of  TR* corresponding to the different values of the kms parameter. 

We then calculated means and standard deviations of these steady state values of TR* 
over the 100 stochastic simulations and obtained the results reported in Figure 4 and Figure 
S4. 
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Figure S4: Bistability in cell cycle transitions under various control models. This figure 
extends Figure 4 in the main text with all the other considered models. 
 
Parameter robustness test of the various models (Figure 5 and Figure S5). We 
considered models 67, 68, $7, $8, -7 and -8; in red are depicted results of models with TF on 
the inhibitor, while in green results of models with TF on the activator. Our robustness 
analysis is inspired by (Barkai and Leibler, 1997). Each of the six models is considered as a 
reference model and from each of it we generated 1000 variants by randomly modifying 
some parameters. For models with TF on the activator we modify parameters kcs, kcd, 
�
��	and for models with TF on the inhibitor we modify parameters kws, kwd, �*��. Each 
alternation of the reference system is characterized by the total parameter variation, k, which 
is defined as: 

A�B�)(�) = 	C DA�B�) �E�E)D
F

EG�
 

where L is the list of the parameters subject to variation, �E is the altered parameter and �E) is 
the corresponding parameter in the reference model. Given a parameter �E), the altered 
parameters are obtained by multiplying �E) to a value x, generated using a loguniform 
distribution in the interval [0.1-10]. 

For each of the generated 6000 models we ran 100 stochastic simulations and 
measured, for each simulation, the time at which TR* reaches population 150. For each 
combination of each model we calculated the mean (over the 100 simulations) of the times at 
which TR* reaches population 150 and plotted results in Figure 5 and Figure S5. 
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Figure S5: Parameter robustness test of the various models. This figure extends Figure 5 in 
the main text with all the other considered models. 

 

 
Figure S6: Checkpoint efficiency on various versions of cell cycle transition control 
models. This figure extends Figure 6 in the main text withal  the other considered models. 
 
Checkpoint efficiency on various versions of cell cycle transition control models (Figure 
6 and Figure S6). We considered pairs of 687/677, 688/678 , 689/679, $87/$77,	$88/$78 , $89/$79 
-87/-77, -87/-77 and -89/-79; also in this case in red are depicted results of models with TF on 
inhibitor, while in green results of models with TF on the activator. For each of these models 
we considered 5 different variants obtained by increasing the activity of the checkpoints 



15 

 

ChPA and ChPI. In particular, for models with checkpoint on the activator we generated 
different models with parameter �
!  with values in this in the set {0, 0.1, 0.2, 0.3, 0.4}, 
while for models with checkpoint on the inhibitor we generated different models with 
parameters �
!� and �
!� both having value (the same) in the set {0, 0.1, 0.2, 0.3, 0.4}.  

For each of the generated 90 models we ran 1000 stochastic simulations and 
measured, for each simulation, the time at which TR* reaches population 150 for all models. 
We used these simulations to calculate means and standard deviations of transition times. 

Full bars in the figure indicate that with this parameter value in more than the 90% of 
the 1000 simulations TR* do not reach population 150; the star means that the percentage is < 
90% but is not 0%. Table S75 shows for all the generated models the exact percentages of 
simulations (over the 1000) where TR* reaches population 150. 

 
 

Parameter TF activator TF inhibitor TF activator TF inhibitor TF activator TF inhibitor

0 100% 100% 100% 100% 100% 100%

0.1 100% 100% 100% 0% 100% 100%

0.2 100% 100% 25% 0% 22.10% 34.10%

0.3 29.50% 9% 0% 0% 0% 0%

0.4 0% 0% 0% 0% 0% 0%

Parameter TF activator TF inhibitor TF activator TF inhibitor TF activator TF inhibitor

0 100% 100% 100% 100% 100% 100%

0.1 100% 100% 100% 100% 100% 100%

0.2 100% 100% 100% 100% 100% 100%

0.3 19% 100% 0% 100% 0% 100%

0.4 0% 100% 0% 100% 0% 100%

Parameter TF activator TF inhibitor TF activator TF inhibitor TF activator TF inhibitor

0 100% 100% 100% 100% 100% 100%

0.1 100% 100% 59.80% 100% 100% 100%

0.2 0% 16.40% 0% 100% 0% 0%

0.3 0% 0% 0% 0% 0% 0%

0.4 0% 0% 0% 0% 0% 0%

Both PBF PBF on inhibitor PBF on activator

CP on activator

CP on inhibitor

Both PBF PBF on inhibitor PBF on activator

CP on both

Both PBF PBF on inhibitor PBF on activator

 
 

Table S5: percentages of simulations where TR* reaches population 150. 
 

6. Oscillations 
 

We considered models 67, 68, $7, $8, -7 and -8. To generate oscillations each of the models is 
extended with a minimal negative feedback loop model shown below. In the figure osc1 and 
osc1* represent respectively the active and inactive forms of a new intermediary enzyme and 
osc2 and osc2* represent respectively the active and inactive forms of another new 
intermediary enzyme. In detail, TR* activates osc1 that, when active, activates osc2 which, 
when active, induces the degradation of TR* and TR. Such combination of positive and 
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negative feedback loops is supposed to give a robust minimal cell cycle oscillator (Ferrell et 
al, 2011; Pomerening et al, 2005). 

Kinetic laws and related parameters are shown in Table S6. Reactions ��), ���, ��% 
and ��( follow the law of mass action, while the other reactions follow the Michaelis-Menten 
kinetics. Parameters have been tuned to let enzyme osc1 to activate fast only when TR* is far 
above the bistability threshold and, when osc2 is active, to let TR* to stay active for an 
amount of time that realistically can be enough for a cell to finish mitosis.  

For each of the generated 6 models we ran simulations of 200 stochastic cell cycles 
and measured the period of TR* oscillations; A period is considered starting when TR* 
switches on and reaches population level 150. We used these values, for all the models, to 
calculate mean and  coefficients of variations of the TR* period (see Table S7). Examples of 
oscillations for all the considered model are shown in Figure S7. 
 
 

 

Minimal negative feedback loop model following (Goldbeter, 1991). 
 

 
 
 

��) = �� × ��
1	 × ��∗ ��� = �% × ��
2∗
�% + (� × ��
2∗) �� = 2,=� �� = 5,=% �� = 1,=% 

��� = �� × ��
1∗ ��% = ���� × ��
2∗ × ��∗ �� = 0.1 �� = 0.025 �� = 1,=% 

��� = �� × � × ��
1∗ × ��
2
�� + (� × ��
2)  ��( = ���� × ��
2∗ × �� �� = 0.5 �� = 5,=%  

Table S6: Kinetic laws and basal parameter set. 
 
 

 Both PBF (mean/CV) PBF on inhibitor (mean/CV) PBF on activator (mean/CV) 

TF on activator (STOP) 348.7/9.5 354.9/9.9 351.6/10.1 

TF on inhibitor (GO) 316.8/9.9 NA/NA 352.5/11.2 

Table S7: Statistic over TR* period. 
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Figure S7: Oscillations. Oscillations observed for models 67, 68, $7, $8, -7 and -8 extended 
with the minimal negative feedback loop model (detailed in Table S6). 
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