Supporting Information

In each village, we let X be the number of 1-5 year-old children uninfected with pneumococcus, I be the number infected with ermB, J be the number infected with mef A/E, and K be the number infected with azithromycin-sensitive strains. We then modeled $P(X(t)=x, I(t)=i, J(t)=j, K(t)=k)$, with $x+i+j+k=N$, as a continuous-time Markov process. We represent this joint probability as $p_{i, j, k}(t)$. Observed values are denoted with the subscript obs.

Calculating Initial Conditions

The posterior distribution for each village is given by the following formula:

$$
p_{i, j, k \mid i_{o b s}, j_{o b s}, k_{o b s}}\left(t_{0}\right)=\frac{\binom{i}{i_{o b s}}\binom{j}{j_{o b s}}\binom{k}{k_{o b s}}\binom{x}{x_{o b s}}}{\binom{50}{15}} p_{i, j, k}\left(t_{p r i o r}\right) / \sum_{i, j, k} \frac{\binom{i}{i_{o b s}}\binom{j}{j_{o b s}}\binom{k}{k_{o b s}}\binom{x}{x_{o b s}}}{\binom{50}{15}} p_{i, j, k}\left(t_{p r i o r}\right)
$$

where 50 corresponds to the number of children per village, and 15 is the number of nasopharyngeal swabs collected in each village at each time point.

Modeling Treatment

Let E be the treatment efficacy against erm B strains, M be the treatment efficacy against mef A/E strains, and S be the treatment efficacy against antibiotic sensitive pneumococcal strains. We can then model treatment as independent binomial draws, as shown in the following equation:

$$
\begin{aligned}
& p_{i, j, k}(t+1)=\ldots \\
& p_{i, j, k}(t)\left(1-\sum_{l=0}^{(i-1)} \sum_{m=0}^{(j-1)} \sum_{p=0}^{(k-1)}\binom{i}{i-l} E^{i-l}(1-E)^{l}\binom{j}{j-m} M^{j-m}(1-M)^{m}\binom{k}{k-p} S^{k-p}(1-S)^{p}\right) \\
& +\sum_{x=i+1}^{(N-j-k)} \sum_{y=j+1}^{(N-x-k)} \sum_{z=k+1}^{(N-x-y)} p_{x, y, z}(t)\binom{x}{x-i} E^{x-i}(1-E)^{i}\binom{y}{y-j} M^{y-j}(1-M)^{j}\binom{z}{z-k} S^{z-k}(1-S)^{k}
\end{aligned}
$$

In other words, the probability of being in state $p_{i, j, k}$ at time $\mathrm{t}+1$ is equal to the probability of being in that state at time t, times the probability of remaining in it, plus the total flow into that state from higher infection states.

Differential Equations

$$
\begin{aligned}
\frac{d p_{i, j, k}(t)}{d t}= & -p_{i, j, k}(t)\left((N-i-j-k)\left(\frac{i}{N} \beta_{\text {mef }}+\frac{j}{N} \beta_{\text {erm }}+\frac{k}{N} \beta_{s}\right)+i \gamma_{\text {mef }}+j \gamma_{e r m}+k \gamma_{s}\right) \\
& +p_{i-1, j, k}(t)(N-(i-1)-j-k)\left(\frac{i-1}{N}\right) \beta_{\text {mef }} \\
& +p_{i, j-1, k}(t)(N-i-(j-1)-k)\left(\frac{j-1}{N}\right) \beta_{e r m} \\
& +p_{i, j, k-1}(t)(N-i-j-(k-1))\left(\frac{k-1}{N}\right) \beta_{s} \\
& +p_{i+1, j, k}(t)(i+1) \gamma \\
& +p_{i, j+1, k}(t)(j+1) \gamma \\
& +p_{i, j, k+1}(t)(k+1) \gamma,
\end{aligned}
$$

where $\beta_{\text {mef }}, \beta_{\text {erm }}$, and β_{s} denote the transmission coefficients for each strain.

Calculating the Joint Likelihood

Let v be the index corresponding to each village, and let i, j, k, and x be the predicted number of children in each of the 4 groups under the model. Let $i_{o b s}$, $j_{o b s}, k_{\text {obs }}$, and $x_{o b s}$ be the number of children observed to be in each group by analysis of nasopharangeal swabs, and θ be the vector of model parameters. Then, the joint likelihood of the observations under the model can be calculated by:

$$
\mathcal{L}(\theta \mid \text { data })=\prod_{v=1}^{8} \prod_{t \in(36,42,54)}\left(\sum_{i, j, k} p_{i, j, k \mid \theta}(v, t) * \mathcal{S}(v, t)\right)
$$

where $\mathcal{S}(v, t)$ is the probability of the observed samples, given i, j, and k :

$$
\mathcal{S}(v, t)=\frac{\binom{i}{i_{o b s}(v, t)}\binom{j}{j_{\text {obs }}(v, t)}\binom{k}{k_{\text {obs }}(v, t)}\binom{x}{x_{o b s}(v, t)}}{\left(\begin{array}{c}
50
\end{array}\right)}
$$

