Text S5: Correlated random walks in one dimension

Suppose animals perform correlated random walks in one dimension (i.e., $\Omega=\mathbf{R}$) and let $P_{m}(x, t)$ be the probability density of an animal being at location $x \in \Omega$ at time $t \geq 0$ (we restrict our attention to one dimension for analytical tractability). The initial value problem that determines the evolution of P_{m} is given by a telegraph equation [1]:

$$
\begin{equation*}
\frac{\partial^{2} P_{m}}{\partial t^{2}}+\frac{2}{\tau} \frac{\partial P_{m}}{\partial t}=u^{2} \frac{\partial^{2} P_{m}}{\partial x^{2}}, \quad P_{m}(x, 0)=\delta(x) \quad \text { and } \quad \frac{\partial P_{m}}{\partial t}(x, 0)=0 \tag{1}
\end{equation*}
$$

Here, τ is the characteristic time an animal moves before changing directions and u is its speed. As correlation time (τ) approaches zero, Eq (1) reduces to a diffusion equation in which D equals the limit of $\frac{1}{2} u^{2} \tau$ as $\tau \rightarrow 0$ and $u \rightarrow \infty$. The solution of (1) is [2]:

$$
P_{m}(x, t)= \begin{cases}e^{-\frac{t}{\tau}}\left\{\delta(x-u t)+\delta(x+u t)+\frac{1}{2 u \tau}\left[I_{0}(z)+\frac{t}{\tau z} I_{1}(z)\right]\right\}, & |x|<u t \\ 0, & |x|>u t\end{cases}
$$

where $z=\frac{1}{\tau} \sqrt{t^{2}-\frac{x^{2}}{v^{2}}}$ and I_{0} and I_{1} are the modified Bessel functions of the first kind (there is no known closed form solution to the telegraph equation in two dimensions). Below, we compute the summary statistics of P_{s}.

Mean of P_{s} : Multiply Eq (1) by x and integrate over Ω to get

$$
\mu_{m}^{\prime \prime}(t)+\frac{2}{\tau} \mu_{m}^{\prime}(t)=0, \quad \mu_{m}(0)=\mu_{m}^{\prime}(0)=0
$$

Here, we have used the fact that P_{m} and $\partial P_{m} / \partial x$ both approach zero as $x \rightarrow \pm \infty$. It follows from the uniqueness of solutions to differential equations that $\mu_{m}=0$, and hence from Eq (1) of Text S1 that $\mu_{s}=0$.

Scale of P_{s} : To determine σ_{s}^{2} we first determine $\mu_{m}^{2}(t)$ (the second moment of P_{m}, not the square of its first moment). Repeating the same procedure as above but multiplying Eq (1) by x^{2} instead of x yields

$$
\left(\mu_{m}^{2}\right)^{\prime \prime}(t)+\frac{2}{\tau}\left(\mu_{m}^{2}\right)^{\prime}(t)=2 u^{2}, \quad \mu_{m}^{12}(0)=\left(\mu_{m}^{2}\right)^{\prime}(0)=0
$$

whose solution is

$$
\begin{equation*}
\mu_{m}^{2}(t)=\frac{u^{2} \tau^{2}}{2}\left(-1+\frac{2 t}{\tau}+e^{-\frac{2 t}{\tau}}\right) \tag{2}
\end{equation*}
$$

Straightforward calculations involving Eqs (1) and (4) of Text S1, (2), and (3*) lead to

$$
\sigma_{s}^{2}=\mu_{s}^{2}=\int_{0}^{\infty} \mu_{m}^{2}(t) P_{r}(t) d t=\frac{u^{2} \tau^{2}}{2}\left(-1+\frac{2 a b}{\tau}+\left(1+\frac{2 b}{\tau}\right)^{-a}\right)
$$

where a and b are parameters of gamma distributed retention times $\left(P_{r}\right)$ of $\mathrm{Eq}\left(3^{*}\right)$. In comparing this result with the corresponding one for random motion, and to identify the effects of correlation, it will be convenient to introduce the dimensionless quantities $\omega=\frac{\mu_{r}}{\tau}=\frac{a b}{\tau}$ and $\xi^{2}=\frac{\sigma_{r}^{2}}{\mu_{r}^{2}}=\frac{1}{a}$. In so doing, we fix D to be a constant and choose u and τ such that $\frac{1}{2} u^{2} \tau=D$. With these substitutions,

$$
\begin{equation*}
\sigma_{s}^{2}\left(D \tau, \omega, \xi^{2}\right)=D \tau\left(-1+2 \omega+\left(1+2 \omega \xi^{2}\right)^{-1 / \xi^{2}}\right) \tag{3}
\end{equation*}
$$

Shape of P_{s} : To determine κ_{s} we first determine $\mu_{m}^{4}(t)$ (the fourth moment of P_{m}). Multiplying Eq (1) by x^{4} and then integrating over Ω produces

$$
\left(\mu_{m}^{4}\right)^{\prime \prime}(t)+\frac{2}{\tau}\left(\mu_{m}^{4}\right)^{\prime}(t)=12 u^{2} \mu_{m}^{2}, \quad \mu_{m}^{4}(0)=\left(\mu_{m}^{4}\right)^{\prime}(0)=0
$$

The solution of this differential equation is

$$
\begin{equation*}
\mu_{m}^{4}(t)=\frac{3 u^{4} \tau^{4}}{2}\left(3+\frac{2 t}{\tau}\left(\frac{t}{\tau}-2\right)-\left(3+\frac{2 t}{\tau}\right) e^{-\frac{2 t}{\tau}}\right) \tag{4}
\end{equation*}
$$

Straightforward calculations involving Eq (4) of Text S1, (4), and (3*) lead to

$$
\mu_{s}^{4}=\frac{3 u^{4} \tau^{4}}{2}\left(3-\frac{4 a b}{\tau}+\frac{2 a(a+1) b^{2}}{\tau^{2}}-\left(3+\frac{2(a+3) b}{\tau}\right)\left(1+\frac{2 b}{\tau}\right)^{-1-a}\right)
$$

Utilizing the dimensionless parameters,

$$
\begin{equation*}
\mu_{s}^{4}=6(D \tau)^{2}\left(3-4 \omega+2 \omega^{2}\left(1+\xi^{2}\right)-\left(3+2 \omega\left(1+3 \xi^{2}\right)\right)\left(1+2 \omega \xi^{2}\right)^{-1-\frac{1}{\xi^{2}}}\right) \tag{5}
\end{equation*}
$$

Eq (1) of Text S1, (3), and (5) and the relation $\mu_{s}=0$ together imply that

$$
\kappa_{s}\left(\omega, \xi^{2}\right)=\frac{\mu_{s}^{4}}{\sigma_{s}^{4}}-3=6\left\{\frac{3-4 \omega+2 \omega^{2}\left(1+\xi^{2}\right)-\left(3+2 \omega\left(1+3 \xi^{2}\right)\right)\left(1+2 \omega \xi^{2}\right)^{-1-\frac{1}{\xi^{2}}}}{\left(-1+2 \omega+\left(1+2 \omega \xi^{2}\right)^{-1 / \xi^{2}}\right)^{2}}\right\}-3
$$

Although the shape $\left(\kappa_{s}\right)$ of P_{s} does not depend directly on $D=\frac{1}{2} u^{2} \tau$ (as was also the case with random motion), it does depend on correlation time τ via ω. See the panel in Fig $S(1))$. Also note that, unlike in previous random walk models where summary statistics of P_{s} were general with respect to P_{r}, the expressions for the scale and shape above depend on explicit form of P_{r} to be a gamma distribution.

Form of P_{s} : Although we are unable to obtain a closed form for the seed dispersal kernel $\left(P_{s}\right)$, we can find it using numerical integration. See Fig $S(2)$.

References

[1] Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26: 263-298.
[2] Morse P, Feshbach H, Hill E (1954) In: Methods of theoretical physics, volume 22. p. 410.

Figure S1: Scale $\left(\sigma_{s}\right)$ and kurtosis $\left(\kappa_{s}\right)$ of the seed dispersal kernel for animals that move according to correlated random walks (CRW). Scale as a function of: (a) The effective diffusion constant, $D=\frac{1}{2} u^{2} \tau$; Parameters: $\mu_{r}=0.5$ and $\sigma_{r}=1.0$. (b) Mean seed retention time, μ_{r}; Parameters: $D=0.5$ and $\sigma_{r}=1.0$. (c) Standard deviation (SD) of seed retention time, σ_{r}; Parameters: $D=1.0$ and $\mu_{r}=1.0$. Excess kurtosis as a function of: (d) The effective diffusion constant, D; Parameters: $\mu_{r}=1.0$ and $\sigma_{r}=2.0$. (e) Mean seed retention time, μ_{r}; Parameters: $D=1.0$ and $\sigma_{r}=2.0$. (f) Standard deviation (SD) of seed retention time, σ_{r}; Parameters: $D=1.0$ and $\mu_{r}=2.0$. Inset in (f) shows that the trend of κ_{s} over large scales of σ_{r} is qualitatively unaffected by the choice of the correlation time scale (τ).

Figure S 2: Correlated random walk in one dimension. (a) The seed dispersal kernel as a function of distance from the source tree $(|x|)$ and standard deviation in seed retention time $\left(\sigma_{r}\right)$. (b) The seed dispersal kernel at larger distances. The larger the σ_{r}, the more frequent the LDD events. Note that $x_{01}<x_{02}<x_{12}\left(x_{01} \approx 7.1, x_{02} \approx 8.0, x_{12} \approx 8.5\right)$. Parameters: $\tau=1.0$ and $\mu_{r}=10.0$.

