
Text S4: Diffusive movement in two dimensions with drift

Suppose animals perform random walks with drift in Ω = R2 and let Pm(x1, x2, t) be
the probability density of an animal being at location x = (x1, x2) ∈ Ω at time t ≥ 0. The
initial value problem that determines the evolution of Pm is now an advection-diffusion
equation [1]
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Here, vi is the net velocity of animals in the xi-direction. A drift can result for a variety of
reasons, including the presence of wind or water, an animal’s migratory behavior, or the
influence of an elevational gradient. Depending on the relative magnitude of the diffusion
rate D and the advection/drift terms (v1 and v2), the movement can be dominated by
random motion, directed motion, or both. The solution of the equation above is
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, (x1, x2) ∈ Ω and t > 0 (1)

The graph of this function is a 2-D Gaussian that expands because of diffusion and whose
center moves in the direction (v1, v2) with speed v =

√
v21 + v22.

Mean, scale, shape, and covariance of Ps: It can be shown using arguments similar
to those used before that
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Furthermore, the covariance of Ps is v1v2σ
2
r . Here, as in one and two dimensional cases, we

have not yet made any assumptions on the full form of Pr. Therefore, the above results on
moments of seed dispersal kernel are generally applicable to organisms moving via diffusion
with drift with any retention time pattern (Pr).

Form of Ps: To find an expression for Ps, we substitute Eqs (1) and (3*) into Eq (1*)
to obtain [2],
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Here, A0 is a positive constant (depending only on a), xc =
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In a polar direction θ (where the angle is taken with respect to the direction of the drift),
we approximate Ps at large distances by
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Therefore, we conclude that Ps exhibits power-law with an exponential cut-off. It is easy to
see that the cut-off distance xc can be no larger than max{

√
bD, 2D

v
}, and that it approaches

one of these values as the corresponding mode of transport becomes dominant. That is, if
random motion dominates (bv2 ≪ 4D) then xc ≈

√
bD and if directed motion dominates

(bv2 ≫ 4D) then xc ≈ 2D
v
. See Fig S(1) for features of Ps for different values of variations

in seed retention times (σ2
r), which is qualitatively similar previous random walk models

without drift (Figure 3*(a-b)).
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Figure S 1: Diffusion with drift in two dimensions. (a) The seed dispersal kernel as a
function of distance from the source tree (|x|) and standard deviation in seed retention
time (σr). The case σr = 0 corresponds to a Gaussian kernel. (b) The seed dispersal
kernel at larger distances. The symbol xij (e.g., x01) indicates the distance at which a seed
dispersal kernel with σr = j (e.g., σr = 1) begins to have more long distance dispersal
events than a seed dispersal kernel with σr = i (e.g., σr = 0). Note that x01 < x02 < x12

(x01 ≈ 4.1, x02 ≈ 4.3, x12 ≈ 5.9). Parameters: D = 1.0, µr = 1.0, v1 = 1, and v2 = 0.
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