Text S4: Diffusive movement in two dimensions with drift

Suppose animals perform random walks with drift in $\Omega=\mathbf{R}^{2}$ and let $P_{m}\left(x_{1}, x_{2}, t\right)$ be the probability density of an animal being at location $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \Omega$ at time $t \geq 0$. The initial value problem that determines the evolution of P_{m} is now an advection-diffusion equation [1]

$$
\frac{\partial}{\partial t} P_{m}=D\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right) P_{m}-\left(v_{1} \frac{\partial}{\partial x_{1}}+v_{2} \frac{\partial}{\partial x_{2}}\right) P_{m}, \quad P_{m}\left(x_{1}, x_{2}, 0\right)=\delta\left(x_{1}\right) \delta\left(x_{2}\right)
$$

Here, v_{i} is the net velocity of animals in the x_{i}-direction. A drift can result for a variety of reasons, including the presence of wind or water, an animal's migratory behavior, or the influence of an elevational gradient. Depending on the relative magnitude of the diffusion rate D and the advection/drift terms (v_{1} and v_{2}), the movement can be dominated by random motion, directed motion, or both. The solution of the equation above is

$$
\begin{equation*}
P_{m}\left(x_{1}, x_{2}, t\right)=\frac{1}{4 \pi D t} \exp \left(-\frac{\left(x_{1}-v_{1} t\right)^{2}+\left(x_{2}-v_{2} t\right)^{2}}{4 D t}\right), \quad\left(x_{1}, x_{2}\right) \in \Omega \text { and } t>0 \tag{1}
\end{equation*}
$$

The graph of this function is a 2-D Gaussian that expands because of diffusion and whose center moves in the direction $\left(v_{1}, v_{2}\right)$ with speed $v=\sqrt{v_{1}^{2}+v_{2}^{2}}$.

Mean, scale, shape, and covariance of P_{s} : It can be shown using arguments similar to those used before that

$$
\mu_{s i}=v_{i} \mu_{r}, \quad \sigma_{s i}^{2}=2 D \mu_{r}+v_{i}^{2} \sigma_{r}^{2} \quad \text { and } \quad \kappa_{s i}=\frac{6 \sigma_{r}^{2}}{\mu_{r}^{2}}\left\{1-2\left(2+\frac{v_{i}^{2} \sigma_{r}^{2}}{D \mu_{r}}\right)^{-2}\right\}
$$

Furthermore, the covariance of P_{s} is $v_{1} v_{2} \sigma_{r}^{2}$. Here, as in one and two dimensional cases, we have not yet made any assumptions on the full form of P_{r}. Therefore, the above results on moments of seed dispersal kernel are generally applicable to organisms moving via diffusion with drift with any retention time pattern $\left(P_{r}\right)$.

Form of P_{s} : To find an expression for P_{s}, we substitute Eqs (1) and (3^{*}) into Eq (1^{*}) to obtain [2],

$$
P_{s}\left(x_{1}, x_{2}\right)=\frac{A_{0}}{x_{c}}\left(\frac{x_{c}}{b D}\right)^{a} x^{a-1} \exp \left(\frac{x_{1} v_{1}+x_{2} v_{2}}{2 D}\right) K_{a-1}\left(\frac{x}{x_{c}}\right)
$$

Here, A_{0} is a positive constant (depending only on a), $x_{c}=\left(\frac{4 b D^{2}}{4 D+b v^{2}}\right)^{\frac{1}{2}}$, and $x=\sqrt{x_{1}^{2}+x_{2}^{2}}$. In a polar direction θ (where the angle is taken with respect to the direction of the drift), we approximate P_{s} at large distances by

$$
P_{s}(x, \theta) \approx \frac{B_{0}}{x_{c}}\left(\frac{x_{c}}{b D}\right)^{a} x^{a-\frac{3}{2}} \exp \left(-x\left\{\frac{1}{x_{c}}-\frac{v \cos \theta}{2 D}\right\}\right), \quad x \gg x_{c}
$$

Therefore, we conclude that P_{s} exhibits power-law with an exponential cut-off. It is easy to see that the cut-off distance x_{c} can be no larger than $\max \left\{\sqrt{b D}, \frac{2 D}{v}\right\}$, and that it approaches one of these values as the corresponding mode of transport becomes dominant. That is, if random motion dominates $\left(b v^{2} \ll 4 D\right)$ then $x_{c} \approx \sqrt{b D}$ and if directed motion dominates $\left(b v^{2} \gg 4 D\right)$ then $x_{c} \approx \frac{2 D}{v}$. See Fig $S(1)$ for features of P_{s} for different values of variations in seed retention times $\left(\sigma_{r}^{2}\right)$, which is qualitatively similar previous random walk models without drift (Figure $3^{*}(\mathrm{a}-\mathrm{b})$).

Figure S 1: Diffusion with drift in two dimensions. (a) The seed dispersal kernel as a function of distance from the source tree $(|x|)$ and standard deviation in seed retention time $\left(\sigma_{r}\right)$. The case $\sigma_{r}=0$ corresponds to a Gaussian kernel. (b) The seed dispersal kernel at larger distances. The symbol $x_{i j}\left(e . g ., x_{01}\right)$ indicates the distance at which a seed dispersal kernel with $\sigma_{r}=j$ (e.g., $\sigma_{r}=1$) begins to have more long distance dispersal events than a seed dispersal kernel with $\sigma_{r}=i\left(e . g ., \sigma_{r}=0\right)$. Note that $x_{01}<x_{02}<x_{12}$ $\left(x_{01} \approx 4.1, x_{02} \approx 4.3, x_{12} \approx 5.9\right)$. Parameters: $D=1.0, \mu_{r}=1.0, v_{1}=1$, and $v_{2}=0$.

References

[1] Okubo A (1986) Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Adv Biophys 22: 1.
[2] Wolfram Research Inc (2004) Mathematica, Version 5.2. Champaign, IL: Wolfram Research, Inc.

