Text S2: Diffusive movement in one dimension

Suppose first that animals perform random walks in $\Omega=\mathbf{R}$ (i.e., one dimension) and let $P_{m}(x, t)$ be the probability density of an animal being at location $x \in \Omega$ at time $t \geq 0$. The initial value problem that determines the evolution of P_{m} is given by a diffusion equation

$$
\frac{\partial P_{m}}{\partial t}=D \frac{\partial^{2} P_{m}}{\partial x^{2}}, \quad P_{m}(x, 0)=\delta(x)
$$

and its solution is

$$
\begin{equation*}
P_{m}(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left(-\frac{x^{2}}{4 D t}\right), \quad x \in \Omega \text { and } t>0 \tag{1}
\end{equation*}
$$

The graph of this function is a Gaussian curve that expands because of diffusion.

Mean of P_{s} : It follows from Eq (4) of Text S 1 and the fact that P_{m} is an even function of x that

$$
\begin{equation*}
\mu_{s}=\int_{0}^{\infty} \mu_{m}(t) P_{r}(t) d t=\int_{0}^{\infty}\left(\int_{-\infty}^{\infty} x P_{m} d x\right) P_{r}(t) d t=\int_{0}^{\infty} 0 \cdot P_{r}(t) d t=0 \tag{2}
\end{equation*}
$$

Scale of P_{s} : Substituting Eqs (1), (2), and (1*) into Eq (1) of Text S1 yields

$$
\begin{equation*}
\sigma_{s}^{2}=\int_{-\infty}^{\infty}\left(x-\mu_{s}\right)^{2} P_{s} d x=\int_{0}^{\infty}\left(\int_{-\infty}^{\infty} x^{2} P_{m} d x\right) P_{r}(t) d t=\int_{0}^{\infty}(2 D t) P_{r}(t) d t=2 D \mu_{r} \tag{3}
\end{equation*}
$$

Shape of P_{s} : Upon substituting Eqs (1), (2), (3) and Eq (1*) into Eq (1) of Text S1 we obtain

$$
\begin{align*}
\kappa_{s} & =\frac{1}{\sigma_{s}^{4}} \int_{-\infty}^{\infty}\left(x-\mu_{s}\right)^{4} P_{s} d s-3=\frac{1}{\sigma_{s}^{4}} \int_{0}^{\infty}\left(\int_{-\infty}^{\infty} x^{4} P_{m} d x\right) P_{r}(t) d t-3 \tag{4}\\
& =\frac{1}{\sigma_{s}^{4}} \int_{0}^{\infty}\left(12 D^{2} t^{2}\right) P_{r}(t) d t-3=\frac{12 D^{2}}{\left(2 D \mu_{r}\right)^{2}}\left(\mu_{r}^{2}+\sigma_{r}^{2}\right)-3 \tag{5}\\
& =\frac{3 \sigma_{r}^{2}}{\mu_{r}^{2}} \tag{6}
\end{align*}
$$

Note that in our derivation of expressions for the summary statistics (i.e., mean, scale and kurtosis above), we did not assume any specific distribution for retention time $\left(P_{r}\right)$.

Furthermore, a counterintuitive feature of our results is that the kurtosis (a key measure of LDD) does not depend on the spatial spreading rate of the animal species (i.e., the diffusion constant D).

