Text S1: Summary statistics of the seed dispersal kernel

Here, we present an analytical method to connect the moments of a seed dispersal kernel $\left(P_{s}\right)$ with the time-dependent moments of an animal movement pattern $\left(P_{m}\right)$ and the distribution of seed retention time $\left(P_{r}\right)$.

Suppose that $\Omega \in \mathbf{R}^{d}$, where $d \in\{1,2\}$ is the number of spatial dimensions. In general, the mean, variance, and "excess" kurtosis of $P_{s}(\mathbf{x})$ in the x_{i}-direction $(i=1,2)$ are defined to be

$$
\begin{align*}
\mu_{s i} & =\int_{\Omega} x_{i} P_{s}(\mathbf{x}) d \mathbf{x} \\
\sigma_{s i}^{2} & =\int_{\Omega}\left(x_{i}-\mu_{s i}\right)^{2} P_{s}(\mathbf{x}) d \mathbf{x} \tag{1}\\
\kappa_{s i} & =\frac{1}{\left(\sigma_{s i}\right)^{4}} \int_{\Omega}\left(x_{i}-\mu_{s i}\right)^{4} P_{s}(\mathbf{x}) d \mathbf{x}-3
\end{align*}
$$

The constant 3 that appears in the equation for $\kappa_{s i}$ is present so that if P_{s} is Gaussian in the x_{i}-direction then $\kappa_{s i}=0$ or, in other words, it is a measurement relative to that of a Gaussian kernel. When $d=2$, the covariance of P_{s} in the two directions x_{1} and x_{2} is defined to be

$$
\begin{equation*}
\sigma_{s 12}=\int_{\Omega}\left(x_{1}-\mu_{s 1}\right)\left(x_{2}-\mu_{s 2}\right) P_{s}(\mathbf{x}) d \mathbf{x} \tag{2}
\end{equation*}
$$

By expanding the polynomials that appear in the different integrands, all summary statistics can be expressed as summation of the moments $\int_{\Omega} x_{i}^{m} x_{j}^{n} P_{s}(\mathbf{x}) d \mathbf{x}$ of P_{s} with appropriate coefficients. For example, if we expand the integrand of $\mathrm{Eq}(2)$ we obtain

$$
\begin{equation*}
\sigma_{s 12}=\int_{\Omega}\left(x_{1} x_{2}-\mu_{s 1} x_{2}-\mu_{s 2} x_{1}+\mu_{s 1} \mu_{s 2}\right) P_{s}(\mathbf{x}) d \mathbf{x} \tag{3}
\end{equation*}
$$

where the first term on the right hand side is a moment term with ($m=1, n=1$), the second with ($m=0, n=1$), the third with ($m=1, n=0$) and the last term with ($m=0, n=0$). Likewise, other summary statistics can also be written as combinations of different moment terms.

In general, the (m, n) th moment of P_{s} can be found by substituting Eq (1*) (the asterisk symbol $*$ denotes main text) into the preceding moment formula and then changing the order of integration,

$$
\int_{\Omega} x_{i}^{m} x_{j}^{n} P_{s}(\mathbf{x}) d \mathbf{x}=\int_{0}^{\infty}\left(\int_{\Omega} x_{i}^{m} x_{j}^{n} P_{m}(\mathbf{x}, t) d \mathbf{x}\right) P_{r}(t) d t
$$

Denoting the (m, n) th moment of a distribution P_{\bullet} by $\mu_{\bullet i j}^{m n}$, we obtain the following important relation between the moments of P_{s} and P_{m},

$$
\begin{equation*}
\mu_{s i j}^{m n}=\int_{0}^{\infty} \mu_{m i j}^{m n}(t) P_{r}(t) d t \tag{4}
\end{equation*}
$$

Thus, the moments of P_{s} can always be computed provided that P_{r} and the (timedependent) moments of P_{m} are known. It is not necessary to know P_{m} in full.

For notational simplicity we will write $\mu_{\bullet i j}^{m n}$ as μ_{\bullet}^{m} when $d=1$, and we will write it as $\mu_{\bullet i}^{m}$ or $\mu_{\bullet j}^{n}$ when $d=2$ and $m n=0$. In the latter case, we will omit the remaining superscript if it is equal to 1 .

