Equations S1. GMA mass balance equations for pools of total masses.

$$
\left.\begin{array}{rl}
d X_{1} / d t & =v_{12,1}-v_{1,2} \\
d X_{2} / d t & =\left(v_{1,2}+v_{3,2}+v_{4,2}\right)-\left(v_{2,3}+v_{2,4}+v_{2,5}\right) \\
d X_{3} / d t & =\left(v_{2,3}+v_{8,3}+v_{18,3}+v_{19,3}\right)-\left(v_{3,2}+v_{3,7}+v_{3,8}\right) \\
d X_{4} / d t & =v_{2,4}-\left(v_{4,2}+v_{4,17}\right) \\
d X_{5} / d t & =\left(v_{2,5}+v_{6,5}+v_{7,5}\right)-\left(v_{5,6}+v_{5,7}\right) \\
d X_{6} / d t & =v_{5,6}-\left(v_{6,5}+v_{6,17}\right) \\
d X_{7} / d t & =\left(v_{3,7}+v_{5,7}+v_{8,7}+v_{18,7}+v_{19,7}\right)-\left(v_{7,5}+v_{7,8}+v_{7,43}\right) \\
d X_{8} / d t & =\left(v_{3,8}+v_{7,8}+v_{20,8}\right)-\left(v_{8,3}+v_{8,7}+v_{8,18}+v_{8,20}\right) \\
d X_{9} / d t & =v_{11,9}-\left(v_{9,10}+v_{9,15}\right) \\
d X_{10} / d t & =v_{9,10}-v_{10,56} \\
d X_{11} / d t & =v_{12,11}-\left(v_{11,9}+v_{11,14}\right) \\
d X_{12} / d t & =\left(v_{4,17}+v_{6,17}+v_{24,12}+v_{33,30}+v_{34,31}+v_{35,32}+v_{40,39}+v_{158,12}\right) \\
& -\left(v_{12,1}+v_{12,11}+v_{12,23}+v_{12,148}+v_{30,33}+v_{31,34}+v_{32,35}\right) \\
d X_{13} / d t & =v_{37,13}-\left(v_{12,1}+v_{9,10}+v_{13,32}\right) \\
d X_{14} / d t & =\left(v_{3,8}+v_{7,8}+v_{11,14}+v_{18,19}\right)-\left(v_{14,142}+v_{14,145}\right) \\
d X_{15} / d t & =v_{9,15}-\left(v_{3,8}+v_{7,8}+v_{15,44}+v_{18,19}\right) \\
d X_{16} / d t & =v_{47,16}-v_{9,15} \\
d X_{17} / d t & =\left(v_{4,17}+v_{6,17}\right)-v_{14,145} \\
d X_{18} / d t & =\left(v_{8,18}+v_{21,18}\right)-\left(v_{18,3}+v_{18,7}+v_{18,19}+v_{18,21}\right) \\
d X_{19} / d t & =\left(v_{18,19}+v_{22,19}\right)-\left(v_{19,3}+v_{19,7}+v_{19,22}\right) \\
d X_{20} / d t & =v_{8,20}-v_{20,8} \\
d X_{21} / d t & =v_{18,21}-v_{21,18} \\
d X_{22} / d t & =v_{19,22}-v_{22,19} \\
d X_{23} / d t & =v_{12,23}-\left(v_{2,3}+v_{5,7}\right) \\
d X_{24} / d t & =v_{25,24}-\left(v_{12,23}+v_{24,12}\right) \\
d X_{25} / d t & =\left(v_{38,25}+v_{124,25}\right)-\left(v_{24,12}+v_{25,24}\right) \\
d X_{26} / d t & =v_{25,26}-v_{26,27} \\
d X_{27} / d t & =v_{26,27}-v_{27,28} \\
d X_{28} / d t & =v_{27,28}-\left(v_{28,29}+v_{28,179}\right) \\
d X_{29} / d t & =v_{28,29}-v_{29,30} \\
d X_{30} / d t & =\left(v_{29,30}+v_{33,30}\right)-\left(v_{30,31}+v_{30,33}\right) \\
d X_{31} / d t & =\left(v_{30,31}+v_{34,31}\right)-\left(v_{31,32}+v_{31,34}\right) \\
d X_{32} / d t & =\left(v_{31,32}+v_{35,32}+v_{37,32}+v_{41,32}\right)-\left(v_{32,35}+v_{32,37}+v_{32,41}+v_{32,186}\right) \\
d X_{33} / d t & =v_{30,33}-v_{33,30} \\
\end{array}\right)
$$

$$
\begin{aligned}
& d X_{34} / d t=v_{31,34}-v_{34,31} \\
& d X_{35} / d t=\left(v_{32,35}+v_{40,35}\right)-\left(v_{35,32}+v_{35,40}\right) \\
& d X_{36} / d t=\left(v_{37,36}+v_{39,36}\right)-\left(v_{36,37}^{a}+v_{36,37}^{b}+v_{36,37}^{c}+v_{36,39}\right) * \\
& d X_{37} / d t=\left(v_{32,37}+v_{36,37}^{a}+v_{36,37}^{b}+v_{36,37}^{c}\right)-\left(v_{37,32}+v_{37,36}\right) \\
& d X_{38} / d t=\left(v_{124,38}+v_{125,38}\right)-v_{38,25} \\
& d X_{39} / d t=\left(v_{42,39}+v_{36,39}+v_{40,39}\right)-\left(v_{39,42}+v_{39,36}\right) \\
& d X_{40} / d t=v_{35,40}-\left(v_{40,35}+v_{40,39}\right)
\end{aligned}
$$

${ }^{(*)}$ A superscript indicates fluxes for the complex sphingolipids that were not represented in Figs. 1 and 2 of the manuscript due to lack of space.

