
 
 
Table S1. Condensed literature information for the SL-E metabolites. 

 

Metabolite 
Symbol 

in 
Model 

Concentration 
(*) 

Comments References 

3-Keto-
Dihydrosphingosine 

(KDHS) 
X1 0.0053 mol% 

Low level expected because it is 
difficult to measure levels for this 
metabolite by thin layer 
chromatography 

[1], ([2], p. 30693) 

Dihydrosphingosine 
(DHS) 

X2 

0.01 mol% () 

Ten times the DHS-P concentration 
([3]). Data obtained according to the 
procedures for mass and species 
measurements in [4] 

[4] 

0.53 mol% Exponential growth phase (1  107 
cells/ml) 

([5], Table II) 

Dihydroceramide 
(Dihydro-C) 

X3 

0.036 mol%  [6] 

0.16 mol% Lag phase [7] 

Dihydrosphingosine -1P 
(DHS-P) 

X4 
0.001 mol%  ([8], Fig. 3C) 

0.00278 mol% Single measure for both S-1-P species ([9], Table 2) 

Phytosphingosine (PHS) X5 

0.05 mol% 

Ten times the PHS-P concentration 
([3]). Data obtained according to the 
procedures for mass and species 
measurements in [4] 

[4] 

0.16 mol% 
Exponential growth phase                     
(1  107 cells/ml) 

([5], Table II) 

Phytosphingosine-1P 
(PHS-P) 

X6 
0.005 mol%  ([8], Fig.3C) 

0.00278 mol% 
Single measurement for both S-1-P 
species 

([9], Table 2) 

Phytoceramide    
(Phyto-C) 

X7 

0.052 mol%  [6] 

0.086 mol% Lag phase [7] 

4.5 mol% 2.5 A600 that correspond to 2.5-5  107 
cells 

([10], Fig 8B) 

Inositol 
Phosphorylceramide 

(IPC-g) 
X8 

0.102 mol% 
Value from [11] at 30C and 2  107 
cells/ml. Estimated as 10% of the non-
plasma membrane concentration  

([11], Fig 7A) 

8.4 mol% Sum of IPC/C and IPC/D at 24C ([10], Fig 8B) 
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CDP- Diacylglycerol 
(CDP-DAG) 

X9 5.4 mol% Complete synthetic medium ([12], Table III) 

Phosphatidylserine (PS) X10 
8.4 mol% Microsomes ([13], Table 2) 

9.8 mol% Complete synthetic medium ([12], Table III) 

Phosphatidic Acid (PA) X11 

3 mol% Microsomes ([13], Table 2) 

3.3 mol% Harvested in the Late log phase ([14], Table 3) 

3.1 mol% Complete synthetic medium ([12], Table III) 

Palmitoyl-CoA (Pal-
CoA) 

X12 0.01 M 
Low level for free long-chain acyl-CoA 
esters 

([15], p. 100) 

Serine X13 
2600 M  [12] 

2720 M Rabbit liver ([16], Table 1) 

sn-1,2-Diacylglycerol 
(DAG) 

X14 
10.7 mol% 

Late exponential phase for DAG and for 
phospholipid concentrations   

([17], Fig. 1) 

0.47 mol% Rat kidney [18] 

Phosphatidylinositol 
(PI) 

X15 

16.7 mol% Microsomes ([13], Table 2) 

4.61 mol% Exponential growth phase (2  107 
cells/ml) 

([11], Fig. 8) 

7.5 mol% Complete synthetic medium ([12], Table III) 

Inositol (I) X16 24.1 M Cytosolic concentration ([12], , Table V) 

Cytidine diphosphate- 
Ethanolamine (CDP-

Eth) 
X17 22 M 

Estimated using the KM of DG-
Ethanolamine phosphotransferase for 
CDP-Eth 

 

Mannosylinositol 
Phosphorylceramide 

(MIPC-g) 
X18 0.14 mol% 

Value from [11] at 30C and 2  107 
cells/ml. Estimate 10% non-plasma 
membrane concentration  

([11] Fig. 7A) 

Mannosyldiinositol 
Phosphorylceramide      

( M(IP)2C-g ) 
X19 

0.0085 mol% 
Value from [11] at 30C and 2  107 
cells/ml. Estimate 10% non-plasma 
membrane concentration  

([11], Fig. 7A) 

4.2 mol% At 24C, not all the species measured ([10], Fig.8B) 

Plasma Membrane 
Inositol 

Phosphorylceramide 
(IPC-m) 

X20 0.918 mol% 
Value from [11] at 30C and 2  107 
cells/ml. Estimated as 90% of the plasma 
membrane concentration from [19] 

([11], Fig. 7A), [19] 

Plasma Membrane 
Mannosylinositol 

Phosphorylceramide  
(MIPC-m) 

X21 1.26 mol% 

Value from [11] at 30C and 2  107 
cells/ml. Estimated as 90% of the plasma 
membrane concentration from [19] 

([11], Fig. 7A), [19] 
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Plasma Membrane 
Mannosyldinositol 

Phosphorylceramide 
(M(IP)2C-m) 

X22 0.0765 mol% 

Value from [11] at 30C and 2  107 
cells/ml. Estimated as 90% of the 
plasma membrane concentration from 
[19] 

([11], Fig. 7A), 
[19] 

Very Long Chain Fatty 
Acid (C26-CoA) 

X23 0.5 mol% 
 

([20], Fig. 2B) 

Malonyl-CoA (Mal-CoA) X24 

182.7 M 

Ac-CoA multiplied by the  relationship  
between rat liver Mal-CoA and. Ac-
CoA, which is 14.5/68.5 according to 
[21] 

[21] 

7.73 mol% 
Concentration with respect to long and 
very long species C22:0, C24:0 and, C26:0 

([22], Table VI) 

1740 M 
1:2 Acetyl-CoA: Malonyl-CoA in vitro 
relationship  

[23] 

Acetyl-CoA (Ac-CoA) X25 870 M 
Table 2 reported 2.5 mM/gr dw. 
Converted to M using RSd Ysx from 
Table 4 and “O” from Fig 2 

([24], Tables 2 & 
4), ([25], Fig. 2) 

3-hydroxy-3-
methylglutaryl-coenzyme 

A (HMG-CoA) 
X26 0.1  M 

Below detection limit  during growth 
in glucose medium in [26] 

[26] 

Mevalonate X27 0.1 M Low level; estimated N/A 

Farnesyl-PP X28 0.1 M 

Low level; estimated. No large 
changes were found under different 
experimental conditions in [27] for 
mouse and rat 

[27] 

Squalene X29 0.283 % total sterols  

Wild-type Ergosterol / Squalene 
relationship was expressed as :  ER 
ergosterol × 0.05 % (w/w) /1.67 % 
(w/w) = 23.7 × 0.05 /  1,67 = 0.712 

([28], Fig. 2) 

Lanosterol X30 

1.9 % total sterols (Ω) M30 microsomal fraction   ([29], Table 3) 

4.0 % total sterols  ([30],  Table 2) 

3.8 % total sterols  [31] 

Zymosterol X31 

6.4 % total sterols M30 microsomal fraction   ([29], Table 3) 

12 % total sterols  ([30], Table 2) 

Ergosterol-ER X32 

9.51 % total sterols 
PM Ergosterol from [29]; average 
relationship of 10:1  between the PM 
and ER from [32]  95.1 / 10  = 9.51 

([29], Table 3), 
([32], Fig. 4) 

60.2 % total sterols  ([29], Table 3) 

43  % total sterols  ([30], Table 2) 

77 % total sterols  [31] 
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Steryl Lanosterol X33 3.4 % total sterols  ([29],Table 3) 
Steryl Zymosterol X34 13.1 % total sterols  ([29],Table 3) 

Steryl Ergosterol-1 X35 41.13 % total sterols 

Assumed as the biggest sub-population 
with 90% of the total Steryl Ergosterol 
pool, this yields 45.7 × 0.9 = 41.13 % 
total sterols  

([29],Table 3) 

Outer PM Ergosterol X36 4.755 % total sterols 

PM Ergosterol from [29]. multiplied by 
the PM ergosterol non-DIG associated 
relationship from [32]. The value is split 
in half representing the PM outer 
ergosterol concentration 95.1 × 0.1 × 0.5 
= 4.755 % total sterols 

([29], Table 3), 
([32], Fig. 4) 

Outer PM Ergosterol DIM 
associated (Ergosterol-r) 

X37 42.795 % total sterols 

PM Ergosterol from [29]. multiplied by 
the PM ergosterol DIG associated 
relationship from [32]. The value is split 
in half representing the PM outer 
ergosterol concentration: 95.1 × 0.9 × 0.5 
= 42.795 % total sterols 

([29], Table 3), 
([32], Fig. 4) 

Internal Acetate    
(Acetate Int.) 

X38 3086 M 
Value at 5 hrs during respiro-fermentative 
phase 

([33], Fig. 2C) 

Inner PM Ergosterol 
(Ergosterol-i) 

X39 47.55 % total sterols 

PM Ergosterol from [29]. multiplied by 
0.5 representing the PM outer ergosterol 
concentration: 95.1 × 0.5 = 47.55 % total 
sterols 

([29], Table 3), 
([32], Fig. 4) 

Steryl Ergosterol-2 X40 4.57 % total sterols 

Assumed as the smallest sub-population 
with 10% of the total Steryl Ergosterol 
pool, this yields 45.7 × 0.1 = 4.57 % total 
sterols 

([29],Table 3) 

Pyruvate X124 227 M  ([34], Fig. 2) 

External Acetate   
(Acetate Ext) 

X125 

1250 M 
Assumed as the rich broth medium 
acetate concentration used in Taylor and 
Parks [35] 

([33], Fig. 2C) 

0.01 M 

Calculated based on a low external 
acetate concentration of 1M under 
aerobic exponential growth conditions: 
acetate pK of 4.75, internal pH of 6.75 
and external pH of 4 

([36], Fig. 6 & 
Eq. 1) 

Adenosine-5’- 
Triphosphate (ATP) 

X128 
1100 M  ([37], Table II) 
850 M Permeabilized yeast cells ([38], Fig. 4) 

3-Phosphoserine (3-P-
Serine) 

X137 446 M Rabbit liver ([16], Table 1) 

Glucose-6-P (G6P) X147 
1176 M Exponential growth ([34], Fig. 2) 
1000 M Permeabilized cells  ([38], Fig. 4) 

Palmitate X158 0.05 M Estimate  

CoA  X161 
60 M Physiological level in rat liver  [39] 
100 M Dictyostelium discoideum [40] 

Serine Ext. X166 4000 M  [3] 

 
() Where the literature reports more than one value reported for the same parameter, the value in bold type is 

used in the model. 

(*)   mol% = concentration of sphingoid base or phosphatidate / concentration of  total phospholipid. 

(†)   U/mg = mol/min/mg. 

(Ω)  Percent with respect the total sterol amount for the S. cerevisiae wild type strain.  
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